
AD-AlSO0 '429 DAYTON UNIV OH SCHOOL OF ENGINEERING F/6 9/9CO0UERPO7 DOCUMENTATION FOR MICROCOMPUTER IMPLEMENTATION--ETC III
OCT 78 F 6 ALBERS, J CROUCH F33657-77-C-0T77

UNCLASSIFIED UDR-TR-78-98BM

f UDR-.TR-.78-98 /i4V

COMPUTER. PROGRAM DOCUMENTATION FOR
MI~fCROCOMPflUTER IMPLEMENTATION STUDY

Dr. F. Gerard Albers

SDr. 3. Crouch

School of EngineeringI University of Dayton
Dayton, Ohio 45469

1 OCTOBER 1978

Final Report June 1977 -September 1978

C)

aLJ
-- j AERONAUTICAL SYSTEMS DIVL3LON

WRIGHT-PATTERSON AIR FORCE BASE
OHIO 45433 UT

IIe Tlel

~1 26 069

UDR- TR- 78-98
UDSE-78-09

OMPUER ROGRAMaCUMENTATION FOR
CROCOMIWTER IMvPL MENTATION STUDY.

/ . F. Gerard/Albers
Ji J. Zrouch

School of Engineering
University of Dayton

Dayton, Ohio 45469?KL&

lp--

-OC7!6z3E&1978

Final fe* JuniA977 -Sep tezimt1978~

AERONAUTICAL SYSTEMS DIVISION
WRIGHT- PATTERSON AIR FORCE BASE
OHIO 45433

=4"

TABLE OF CONTENTS
a

TABLE OF CONTENTS ii

LIST OF TABLES v

LIST OF FIGURES ,.

LIST OF SYMBOLS ,,:. vii

CROSS REFERENCE TABLE ., -. x

SECTION -
--._ ' 1-1. ; :

1 INTRODUCTION

Z SOFTWARE ELEMENT FAMILY TREE 2-1

3 TRAINING PROGRAM OPERATION OVERVIEW 3-1

3. 1 SOFTWARE SYSTEM STRUCTURE 3-1

3.2 MEMORY ALLOCATION 3-1
3.3 COMPILING, LINKING AND LOCATING 3-2

3.3. 1 Compiling 3-2

3.3. 2 Linking 3-4

3. 3.3 Locating 3-5

3.4 SIMULATION FRAMING CONTROL 3-5

4 CONTROL LOADING FORCES AND EQUATIONS 4-1

4.1 SIGN CONVENTIONS 4- 1

4.2 LOADING FORCES DUE TO CONTROL
VELOCITY AND POSITION 4-2

4.3 BOBWEIGHT FORCES 4-6

4.4 LIMB BOBWEIGHT FORCES 4-9

4.5 CONTROL LOADING EQUATIONS 4-12

4.5. 1 Pitch 4-13

4.5. 2 Roll 4-13

4.5.3 Yaw 4-15

4.6 CONTROL LOADING LOOP 4-15

5 COMPUTER PROGRAM SYSTEM DESCRIPTIONS 5-1

5. 1 GENERAL PROCESSING 5-1

5.2 THE UTILITY MODULE 5-3

5. 2. 1 Declarations 5-4

5. 2. 2 Teletype Conununications 5-4

5. 2. 3 Console Input/Output 5-6

.i • i

3 SECTION PAGE

5. 2. 4 Mathboard Interface 5-75.2.5 Analog Input Interface 5-9
5.2.6 Analog Output Interface 5-10

5.2. 7 Self Test and Calibration Routines 5-11

5. 2. 7. 1 Mathboard Test (0) 5-11
5. 2. 7. 2 ADC Test (1) 5-12
5. Z. 7.3 Gain Test (Z) 5-13
5. Z. 7.4 DAC Test (3) 5-13
5.2.7.5 Ramp Test (4) 5-14

5. 2. 8 Interrupt Structure 5-14

5.3 SCAN MODULE 5-15
5.4 SIMULATOR MODULE 5-16

5.4.1 Declarations 5-17
5.4.2 Frame Rate Generation 5-17
5.4.3 Dummy Procedures 5-19
5.4.4 Simulator Processing 5-20

5.4.4.1 Simulator Initialization 5-20
5.4.4.2 Simulator Loop 5-22
5.4.4.3 Pitch Processing 5-Z5

5.4.4.3.1 Travellimit 5-27
5.4.4.3.2 Deadband 5-28
5.4.4.3.3 Spring and breakout

forces 5-29
5.4.4.3.4 Viscous and coulomb

friction forces 5-29
5.4.4.3.5 Bobweight forces 5-30
5.4.4. 3.6 Force integration and

output 5-30
5.4.4.3.7 End-of-frame routines 5-30

6 COMPUTER PROGRAM SYSTEM USERS GUIDE 6-1

6. 1 GENERAL INFORMATION 6-1
6.2 SOFTWARE DEVELOPMENT 6-2
6.3 SIMULATOR EQUATIONS 6-z
6.4 EQUATION SCALING 6-8
6.5 EQUATION IMPLEMENTATION 6-16

6.5.1 Pitch Equations 6-166.5. 2 Roll Equations 6-17

6.5.3 Yaw Equations 6-18

6.6 HARDWARE INTERFACE DESCRIPTION 6-19

iii

* SECTION PAGE

6. 6. 1 Analog Input Interface 6-20
6.6.2 Analog Output Interface 6-21
6.6.3 Teletype Interface 6-22
6.6.4 Frame-Time Interface 6-22

6.7 SYSTEM OPERATION 6-23

6.7.1 Interfacing 6-24
6.7. 2 Power Up and Simulator Execution 6-24
6.7.3 Optional Features 6-24

6. 7. 3. 1 Reset 6-24
6.7.3.2 Parameter Changes 6-25
6.7.3.3 Self- Test Programs 6-26

APPENDIX

A MODULE FLOW CHARTS A-1

I

i

I

ii

I

ii

II

LIST OF TABLES

TABLE PAGE

4.1 SIGN CONVENTIONS 4-1

4.2 CONTROL LOADING COMPONENTS 4-5

4.3 PITCH FEEL SPRING BREAK POINTS 4-14

5.1 PARAMETER NUMBER TABLE 5-23

6.1 INPUT/OUTPUT SENSITIVITIES 6-9

6.2 MICROCOMPUTER COEFFICIENTS 6-13

6.3 PITCH SPRING PARAMETERS 6-14

I

a

I

1

I

* '

1v

I I I r i .L . . . i - -- , ? iii i i

a

LIST OF FIGURES

FIGURE
PAGE

2. 1 Software Elements Family Tree 2-3

3. 1 Memory Allocation 3-3

3.2 Frame Timing 3-6

4. 1 Sign Conventions 4-3

4.2 Idealized Bobweight in Pitch Axis 4-8

4.3 Limb Bobweight Simulation 4-1I0

4.4 Control Loading Loop 4-18

5. 1 General Flowchart 5-2

5.2 Simulator Module Flowchart 5-21

5.3 Pitch Processing Flowchart 5-26

6. 1 Force Component Diagram - Single Axis 6-4

6.2 Integer Multiplication Algorithm 6- 12

* 6.3 Pitch Spring 6-15

6.4 Frame Time Pulses 6-23

vi

LIST OF SYMBOLS

a x-directed airplane acceleration (ft/secx

a z-directed airplane acceleration (ft/sec 2
z

B distance from airplane C. G. to bobweight rotational

axis. See Figures 2. 2 and 2. 3.

c bobweight moment arm. See Figure 2. 2.

D stretch viscous damping coefficientC

D i , D2 viscous damping coefficients

F A actuator force

f1J fz coulomb friction coefficients

FB bobweight force

FF spring feel force

F pilot forcea p

F control loading forceS

FF intermediate actuator stick force variable

g acceleration of gravity (ft/sec2

G transfer function

GE, GA , GR control gear ratios

iv electrohydraulic valve current

I , I , I , I airplane moments
x y z xz

L rolling moment/I (sec-)

x

M pitching moment/I (sec-). Also used for mass of arm.
See Figure 2.3.

* du

Differentation with respect to time is indicated by a dot. Thus 'u =

Vii

M1 M2 control system masses

m airplane mass. Also used for bobweight mass.
-2

N yawing moment/I (sec
z

N y-directed dynamic airplane acceleration in g units

N z-directed dynamic airplane acceleration in g units
z

p roll rate (degrees per sec)

q pitch rate (rad/sec or °/sec)

R pilot force moment arm. See Figures 2. 2 and 2. 3.
Also used as sample rate (R = l/T).

r yaw angle rate (degrees per sec)

s Laplace variable

T sample interval

u x-velocity perturbation (ft/sec)

U, U undisturbed airplane x velocity (ft/sec)
0

v y-velocity perturbation (ft/sec)i

w bobweight weight

x valve spool position
sp

X x-force component/mass (ft/sec)

XI X control stick grip roll system displacements (right plus)
a' al' Xa2

X , Xel, XeZ control stick grip pitch system displacements (aft plus)

X r, Xrl, XrZ rudder pedal system displacements (right foot forwardplus)

* X , M , etc. dimensional stability derivatives defined as:U U

Lim X Lim M
u-'O u ' u-'O 5u , etc.

x value of x at t--n" Tn

Y side force component/mass (ft/sec2)

Yn-i value of y at t = (n-l) T

c2Z z-force component/mass (ft/sec)

viii

C' airplane perturbation angle of attack (w/U radians)
g 0

6control surface angle

8command control surface angle

& aileron angle (right up positive, degrees)
a

6 elevator angle (T. E. down positive, degrees)e

6 rudder angle (left positive, degrees)r

delay operator (i.e. Ayn
= ynl

4 azimuth angle (degrees)

* roll angle (degrees)

6 airplane pitch angle (radians or degrees)

6 value of 8 att=n"T
n

Alength of limb bobweight arm. See Figure Z. 3.

FBr breakout force level

J

41

ix

CROSS REFERENCE TABLE

Math Symbol Mnemonic Description

Pitch X PITCH Stick Displacement - Pitch Axis

Xp PDOT Stick Velocity - Pitch Axis

K KPLIMF Pitch Limit Factor

KLp KPLIMLEAD Pitch Limit Lead Factor

KBp KPBRKLEAD Pitch Breakout Lead Factor

N z NZ Airframe Normal Acceleration -
Pitch Axis

QDOT Airframe Angular Acceleration-

Pitch Axis
0.64 KPVISC Pitch Viscous Damping Coefficient
1. 5 KPCOUL Pitch Coulomb Friction Coefficient
2.5 KPBRAK Pitch Breakout Force Coefficient
3.0 KNZ Pitch Normal Acceleration Coef-

ficient
0. 026 KQDOT Pitch Acceleration Coefficient

Roll XR ROLL Stick Displacement - Roll Axis

X R RDOT Stick Velocity - Roll Axis
K KRLIMF Roll Limit Factor

R
KLR KRLIMLEAD Roll Limit Lead Factor

KBR KRBRKLEAD Roll Breakout Lead Factor

N NY Airframe Normal Acceleration -

Roll Axis
)PPDOT Airframe Angular Acceleration -

Roll Axis
4.5 KRSPRING Roll Spring Coefficient
0.06 KRVISC Roll Viscous DImpijig Coefficient
1. 5 KRCOUL Roll Coulomb Friction Coefficient
2. 0 KRBRAK Roll Breakout Force Coefficient
5.0 KNY Roll Normal Acceleration Coeffi-

cient
0. 008 KPPDOT Roll Acceleration Coefficient

Yaw X YAW Rudder Pedal Displacement - Yaw
Axis

Xy YDOT Rudder Pedal Velocity - Yaw Axis

x

*

a

Math Symbol

K KYLIvF Yaw Limit Factor
Y

KLy KYLIMLEAD Yaw Limit Lead Factor

KBy KYBRKLEAD Yaw Breakout Lead Factor

15.0 KYSPRING Yaw Spring Coefficient
0. 905 KYVISC Yaw Viscous Dumping Coefficient
4.5 KYCOUL Pay Coulomb Friction Ceofficient
5. 0 KYBRAK Yaw Breakout Force Coefficient

x

ic

[-J

SECTION 1

INTRODUCTION

The advent of the microcomputer has revolutionized the field of

computer technology in much the same way that the transistor revolution-

ized the field of electronics design. Simulators have characteristically

been designed around large, high speed, general purpose computers.

The microcomputer, on the other hand, is usually employed as a stand-

alone, dedicated subsystem component. The concepts of the stored

program, "fetch and execute" architecture are common between the two

but the similarity does not go much further. For example, the memory

of the microcomputer is distinctively divided into program instructions

and data storage. Instructions are stored in an unalterable read only

memory (ROM or PROM) and variable data is stored in random access

memory (RAM). Thus, there are no requirements for loading the pro-

* gram and there are no memory overlays. The software is neatly arranged

into one functioning "module" although several software packages (also

* called modules) may have been linked together to form the real-time

"modules. " There are no operating systems or executives for the micro-

computer in the same sense as for its larger brother. Furthermore,

(and this is probably the most significant point), the microcomputer

* "software"l is very hardware oriented. The liberalizations and generali-

zations concerning input/output, memory access, and mathematical

operations which can be used with the larger systems simply do not

exist for the micro. The total microcomputer system design requires

that the hardware not be separated from the software; the designer must

thoroughly understand both. Similarly, a discussion of the software

must include at least a relevent discussion of the hardware.

This introduction is meant to aid the reader in analyzing the

approach which was taken in developing this document. In many cases

1-1

4 the words, terminology and even general concepts of DI-H-3277/M4 do

not apply to the microcomputer. On the other hand, some topics (such

as hardware related material) has been included although not called for

in the DID. As one might suspect from the foregoing discussion, the

title "Computer Program Documentation" does not completely describe

the true nature of this document. However, the following sections are

developed to correspond as closely as possible with sections required by

DI-H- 3277/M4.

II

11

1-

II

SECTION 2

SOFTWARE ELEMENT FAMILY TREE

The entire control loader software was written in the Intel high-

order microcomputer language called PLM (PL/M-80), with the excep-

tion of the analog -to- digital conversion routine which was programmed in

assembly language. The programs were structured into a utility module,

a scan module, and a simulator module. As the name implies the utility

module provided system support in the form of calibration and test rou-

tines, system interface procedures, and system initialization. The scan

module causes twelve of the available sixteen A-to-D converter channels

to be scanned sequentially and the converted values to be placed in the

appropriate RAM locations for later use. The simulator module contains

the frame rate generator, simulator initialization routines, and the simu-

lator equations themselves. These three modules were independently

compiled and linked into machine code. The executable machine code

was placed in PROM (programmable read only memory). The variable

data and equation coefficients are placed in RAM (Random Access Memory)

during real-time.

The software is best described by structuring it into elements as

illustrated in Figure 2. 1. The elements that reside in the utility module

are designated by a ItJ'1 ; the simulator elements by an "IS". The scan

module is shown as a separate entity.

The "main program" is entered whenever a reset occurs. It initial-

izes all system parameters and immediately calls the simulator into

action. The executive is actually part of the main program and it admin-

isters to the six programs (0 through 5) of the microcomputer. When a

program is terminated, control returns to the executive. Since the simu-

lator is one of these programs, an exit from it will pass control to the

2-1

executive regardless of how it was entered. The scan module is only

used by the simulator for analog input purposes. In addition, the simula-

tor contains its own routine for changing the equation coefficients and

constants.

I

I

I

I

I

I

*1z-
I!

.4 z

-C4

PL44

,7--

> 0

II

0 0

0 E-4

E-44

E-4.

2-3

SECTION 3

TRAINING PROGRAM OPERATION OVERVIEW

This section is designed to provide an overview of the software

system structure and event sequencing, memory allocation and simula-

tion framing control. Due to the nature of the microcomputer the soft-

ware requires no loading, nor an operating system for control. Therefore,

only overview items which are relevent to the microcomputer system

are discussed.

3. 1 SOFTWARE SYSTEM STRUCTURE

System control always resides in either the executive (see Figure

2. 1) or in the simulator. The simulator is simply an "infinite loop" of

statements which continuously (120 times per second) solves the control

loading equations. It accepts data Inputs through the analog input inter-

face (and scan module) and controls the force on the stick through the

analog output interface. The only way to exit the. simulator is through the
. 1

parameter change routine in which case control passes to the executive.

The executive queries the system operator (through the teletype) for a
I

program number which it executes immediately. When a program is

exited (including the simulator) control passes once again to the execu-

tive. The teletype also plays a roll in the parameter change routine in

that the operator specifies which parameter is to be changed and to whatI

value. The operator can also select whether to return to the simulation

or to pass control to the executive at this time.

3.2 MEMORY ALLOCATION

The microcomputer system is equipped to accomodate 8K (four

2716's) of programmable read only memory (PROM) and 2K (eight 2113's)

3-1

4- U of random access memory (RAM). The three modules (utility, simulator

and scan) were independently compiled and linked into a single object

module which was placed in the PROM. Certain PLM library routines

were linked into the object module also. The exact locations of the

modules and routines in PROM is relatively unimportant since none of

the PROM locations are alterable. However, this type of detailed infor-

mation can be gotten in the cross-reference listing and the link and

locate maps (see Volume 3). At this point it is sufficient to say that

the PROM memory lies in the lowest area of memory since execution

starts at location 0 (see Figure 3. 1). Presently 6820 (decimal) loca-

tions of the PROM's are actually used out of the available 8096. Vari-

ables are stored in RAM which starts at 3800 H (hex). Only 500 of the

available 2000 locations are used. The upper portion of memory is

reserved for the peripheral circuit boards in a memory mapped I/O

configuration. The analog-to-digital converter (ADC) has a base add-

ress at F700H, the digital-to-analog converter (DAC) at F708H, and
I

the high speed mathboard at FFFOH.

3. 3 COMPILING. LINKING AND LOCATING

The three modules involved in this simulator were individually com-

piled or assembled into executable machine code. Each module's machine

code then had to be linked together so that they could interact as a unit.

This single block of machine code and the address references within it

had to be properly located so that it performed properly in the System

80/20. All of these functions were performed using the services of the

Intel ISIS-II operating system as described in the following paragraphs.

3. 3. 1 Compiling

The Utility and Simulator Modules were written in PL/M-80,

Intel's high order langugae. The compiler is called PLM80 and it is

invoked through ISIS by executing PLM80 and specifying the source code

3-2

MATHBOARD FFFOH

DAC F708H

ADC F700H

A VACANT

3FFFH

RA / UNUSED (16383)
RAM - - - -- -- - 3A4F1{

VARIABLES 3800H

(14336)

VACANT

1FFFH
*1 UUSED(8096)

UNUSED- - - 1AA4
(6820)

PROM OBJECT
CODE

0

Figure 3. 1 Memory Allocation

3-3

Ufile name and the desired compiler options. The compiler commands

for the Utility (CNTU6. SRC) and Simulator (CNTS85. SRC) modules were

respectively:

PLM80 :F1:CNTU6. SRC SYMBOLS DEBUG XREF PAGEWIDTH (132)
PLM80 :FI:CNTS85. SRC SYMBOLS DEBUG XREF PAGE WIDT (132)

The :Fl: specifies that at the time of compilation the source file resided

on disk drive number 1. An explanation of the options and other features

of the compiler can be obtained in the ISIS-II PL/M-80 Compiler Operator's

Manual. As a result of executing the above commands, two object files

are created on disk drive 1 with the names CNTU6. OBJ and CNTS85. OBJ

respectively.

Similarly, the Scan Module source SCAN. SRC is assembled

into object code by executing the following ISIS command:

ASM80 :Fl:SCAN. SRC

The optional compiler controls were incorporated with the source listing

and an explanation of these can be obtained from the ISIS-II 8080/8085

1 Macro Assembler Operator's Manual. This assembler likewise produces

an object file with the same generic name as the source; namely,

; SCAN. OBJ.

3.3.2 Linking

* AThe three object files must now be linked together into one

unit. In addition, certain routines from the PLM library are required

as a result of using the PLM compiler. The task of unifying these four

files into one unit of concise machine code is the job of the ISIS-I linker

called LINK. A description of this program can be obtained from the

ISIS-II System User's Guide. The actual link command for this project

can be obtained from the link listing. It merely specifies that LINK is

to link :Fl:CNTU6. OBJ, :FI:CNTS85. OBJ, :Fl:SCANDOBJ, and PLM80. LlB

to a new file called CNT85. LNK on disk drive number 1.

3-4

3.3.3 Locating

The object code file for the system now resides in a disk

file called CNT85. LNK. This file must be adjusted so that the execu-
table code, the variables and other factors lie in the proper location.

This is the task of program LOCATE which is also described in the

ISIS-If System User's Guide. The exact command used to invoke this

program can be obtained from the locator listing. This listing contains

the final addresses of all the system parameters including the address

of the starting location of the code for each line in the PLM listings.

The final object code for the entire system is located in a file called

CNT85. It is this code which was programrnmed nto the system PROM's.

3.4 SIMULATION FRAIfNG CONTROL

Program execution starts from location 0 which is in the "main"

program. A series of initializations are performed and control passes

to the simulator. The simulator, in turn, initializes certain parameters

and functions, one of which is the frame rate generator. This generator

*is a procedure which loads a hardware counter. This counter is decre-

mented by the system clock while the simulator is calculating the control

loading values. When all three control axes have been calculated and the

values have been written to the DAC's, the simulator waits for the counter

to decrement to zero which fires an interrupt (at level 1). This interrupt

re-initializes the frame rate generator and allows control to pass back

to the beginning of the simulator loop. Thus, it can be seen that the.

frame time available for computation is held constant 8. 33 milliseconds

(1/120 second) while the actual time consumed in computation will vary

according to the processing requirements of each axis. The worst-case

(maximum) amount of time for all computation is approximately 7. 8

milliseconds. This maximum occurs when all three actuators are in the

linear portion of their ranges. Figure 3. 2 illustrates the relative times

3-5

I

consumed .or scanning the analog input channels and for the calculations

associated with each axis.

_______ FRAME TIME AVAILABLE__
1 -8. 333 MS

SCAN PITC- J ROLL YAW__
0. 8 NS 2.5 W Z.5 MS 2. 0o MS _

FRAME TIME USED t 7.8 MS MAX

Figure 3. 2 Frame Timing

1

£

I

I

3-6

4

4' 4
SECTION 4

CONTROL LOADING FORCES AND EQUATIONS

4. 1 SIGN CONVENTIONS

Since the McFadden Control Loader was used in the simulator, we

elected to adapt our sign conventions to it. Table 4. 1 summarizes the

maximum stick parameters and the sign conventions of the McFadden

control loader and, thus, of the overall system. The stick and rudder

pedal displacements produced one volt for every inch of travel at the

McFadden interface even though the mechanical limits prohibited travel

over a full 10 inches (corresponding to the analog full scale of 10 volts).

* AU other parameters are scaled to 10 volts at their maximum value. The

displacement and velocity parameters are obviously control loader outputs

(computer inputs) and the force is a control loader input (computer output).

1 Thus, if the stick is moved aft (positive direction, positive voltage output)

an opposing force is produced by the computer which places a negative

voltage input to the control loader resulting in a forward force.

TABLE 4. 1 SIGN CONVENTIONS

PositiveAxis Parameter Pitive Max Value
-- Direction

Pitch Displacement Aft 7 in (5 in forward)
Velocity Aft 50 in/sec

Force Aft 150 pounds

Roll Displacement Right 7 inches
Velocity Right 60 in/sec
Force Right 100 pounds

Yaw D'splacement Right Rudder 3. 25 inches
Velocity Right Rudder 50 in/sec
I orce Right Rudder 200 pounds

4-1

* Thus, if we select positive'directions for control -notion, velocity,

and force to be aft stick, right stick and right pedal forward, the output

a feel force will properly oppose the pilot action.

The control loading forces are functions of control position and

velocity. In the cases of the pitch and roll axes, we base all forces on

the motion of the top of the control stick in inches and inches per second.

Control stick aftward is positive displacement (X e) and positive velocity

eX). Thus, positive X eresults in upward elevator trailing edge (nega-

tive elevator angle, 8) and the aircraft moves toward a nose up attitude.

Positive pilot force (F p) is aftward while the resulting control loading

force (F) is forward (negative) so that the net force on the control stick

is (F p+F) in the positive X edirection. Positive displacements, veloci-

ties, control angles and forces are illustrated in Figure 4. 1

Control stick right giving right aileron trailing edge up is positive

X a a , and 8 a. The aircraft moves toward right wing low. Positive

forces are shown in Figure 4. 1

In the case of the yaw axis, positive displacement (Xr) and velocity

6C r) is right rudder pedal forward. This gives right rudder deflection

(8 r) which is negative and the aircraft moves toward nose right. Positive

pilot force is forward on the right pedal while negative force is forward

on the left pedal.

4.2z LOADING FORCES DUE TO CONTROL VELOCITY AND POSITION

In an airplane without power assist the opposing force the pilot feels

is due to mechanical stops or friction in the control members plus the

hinge moment which must be overcome to hold the control surface in

place. Due to the magnitude of these forces in high speed flight, many

modern aircraft have fully powered control systems in which an artifi-

cial feel system provides the pilot a feedback force approximately

4-2

XeXe

PITCH F Fp

,- Be(Neg.)

Elevator Forward - =

0 b Xa, Xa

ROLL Fp TFs

Left FRight

Positive Aileron So

YAW -- Xr, Xr

Left 0 Right

£ Fp

Rudder

8r (Neg.)

Aft

Figure 4. 1 Sign Conventions

4-3

a proportional to the force that would be required without power. Sometimes

the force may be modified by adding artificial damping, for example. In

the simulator, this control loading (feel) force must approximate, as

nearly as possible, the actual feel force provided in the real airplane.

The simulator control loading force is formed by adding together

various components, each of which embodies a characteristic observed

in the actual airplane control loading force. The components of loading

force included in the control loading microcomputer are described in

Table 4. 2

The components shown in Table 4. 2 are common to many mechani-

cal systems. The viscous friction term is the linear part of the frictional

force and it appears partially due to the motion of the control surface in

the fluid (air). However a certain level of viscous friction is desirable

for stability and feel quality. The A-10 aircraft, for example, has an eddy

current damper included as part of the control system to increase the

viscous damping.

The coulomb friction term simulates the dry friction resulting from

cables, pulleys, and arms which necessarily have sliding contact with

* each other and with other members in the real airplane. This frictional

* ' force is of fixed magnitude always opposing the motion of the control.

The breakout force is that force which must be applied to get any

mechanical system off of "dead center."1 It is similar to lifting a weight

from a table. The applied force must build up to at least equal the

weight force before the weight will move. Likewise, in causing a pulley

wheel to turn, the applied torque must build up to equal the load torque

before the wheel will turn.

Deadband represents the freeplay in a mechanical system around

the trim or equilibrium position of the control. The freeplay is caused

by such things as cable slack and loose fittings. The deadband may

4-4

* TABLE 4. 2 CONTROL LOADING COMPONENTS

Mathematical
Name Characteristic Designation

Viscous Friction k

Coulomb Friction k sign () or
(Dry or Sliding Friction) k(X/jX~

Breakout (Preload) -*-* k sign (X-X.M)

Deadband a -X-X trim [u(6 -a)+u(-6 -a)]F(6)

or 6 where u(6) is the
uni stpfnto

F and where

Feel Spring -trm k (6)+
or6 c ontinuous, but

with discontinuous
slope. Here

Ix 6 X-xtrim

Position Limiter a k(X-b) if X'2b
0. for -a<X~b
k(X+a) if X:5-a

Velocity Limiter a X(ka;: -
ak kX); X.- a

4-5

4 exist either right at the cockpit control or elsewhere in the system such

as at the elevator actuator in the tail. Actually, deadband exists through-

out the system at every interface between members.

The feel spring force represents the hinge moment of the control

surface. Since most modern aircraft have fully powered control systems,

a feel spring is included to artificially provide the pilot a force suitably

like that due to hinge moment. In the aircraft simulator, the feel spring

force is made as nearly like the aircraft feel spring as possible. Hinge

moment varies with control surface deflection, angle of attack, trim

angle and dynamic pressure so the feel spring may reflect all of these

variations. Usually, the feel spring force is a nonlinear function of

control deflection which may be made dependent on dynamic pressure.

The position limit force represents the physical limit on motion of

the control. When the position limit is reached, the pilot must feel a

realistic hard stop just like the hard stop he feels in the aircraft. The

feel of the stop is better if there is a high gradient of force build-up
a

rather than the sudden application of a high force. Also, the high fre-
I

quency content of the force signal is less.

Aircraft control systems usually impose limiting velocities of

motion of the control stick and rudder pedals. These result from non-

linearities in the various system elements or they may be deliberately

imposed. Limiting velocities are desirable in that they protect the

system components from damage. Like the position limiting force, the

velocity limiter is depicted as a high force build-up when the velocity

exceeds the limit.

4.3 BOBWEIGHT FORCES

The inertial effects of the aircraft accelerations upon the parts

of the control system affect the control loading forces. These inertial

4-6
I

forces, referred to as bobweight forces, may be calculated when the air-

frame motion variables are known. Perhaps the greatest contributions

to the bobweight forces come from the control surfaces therrselves except

when the control system is fully powered. In that case, the aircraft con-

trol system may include an actual bobweight (as in the A-10) to provide

an inertial stick feel force. A bobweight may sometimes be used only in

the pitch axis (A-10). If the aircraft control system has bobweight forces,

these should be present in the simulator control loading system also.

Consider an idealized bobweight attached to the airplane as shown

in Figure 4.2. The bobweight obviously will exert an inertial moment on
the control stick. We assume the motions are restricted to the plane of

the paper. Then the dynamic acceleration acting at the CG of the air-

plane is:

a = (4r-U 0) = U (-q) (Positive downward) (4-.1)z o o

In g-units, with positive g's meaning upward acceleration, we have:

a U
N = - = -o (.q) (4.2)

z g g

Thus, we see how angle-of-attack rate and pitch velocity lead to z-

directed acceleration. Positive G-acceleration will result in the bob-

weight trying to rotate downward and a forward stick force will be felt by

the pilot. If the bobweight has mass, m, and weight, W, we have:

F -(m)-c/R (4.3)

W c
F - - (-N "g)-c/R = W- Ns g z R z

Symbols defined in Figure 4. 2.

dynamic z-acceleration is total z-acceleration minus 1.

4-7

a-z

Fp FS

q rod/sec.

TTX Airplane C.G.

B

z
mass= m =W/g
Moment of inertia

* about A = m c

Figure 4. 2 Idealized Bobweight in Pitch Axis

4-8

4'
If the airplane experiences an angular acceleration about its CG

(q), the bobweight will lag behind. For a positive 4 (pitch up), the bob-

weight will try to rotate downward creating a forward stick force as

shown:

F IF -M+B) a (+B)E q "
s p 57.3R 57.3gR q (44)

where q is in degrees per second per second.

The total bobweight feel force is the sum:

I W;(E+B)
F - N + . q (4.5)

s R) 57. 3gR

If R = 1.67 ft, w = 6. 26 Lb., c .8 ft, and B 15.31 ft we find:

F = 3 N + .02624 (4.6)
S z

as on the A-10.

4.4 LIMB BOBWEIGHT FORCES

In the presence of aircraft accelerations, the pilots arm and hand

gripping the control stick will behave like a bobweight. The limb will

try to lag behind the inertial airplane accelerations and the pilot must

exert forces to hold the stick/limb combination steady.

In vertical accelerations and pitch accelerations, the limb bob-

weight forces on the stick would appear to be mainly in the z-direction

(vertical) and we have no good way to impart simulated vertical stick

feel forces to the pilot. However, in side accelerations and roll accel-

erations, the limb bobweight forces on the stick would be y-directed

(sideward) and we can impart simulated side stick feel forces to the

pilot.

4-9

I

Consider an idealized bobweight, as shown in Figure 4. 3 simula-

ting the pilots arm/hand acting on the control stick. We make the follow-

ing simplifying assumptions:

1) Pilot's body immobile except for arm.

2) Mass of arm, M, concentrated at a point "L" distant from body.

3) Action of acceleration on arm simulated by stick force, F

acting distance "R" from shoulder.

4) Arm a distance "B" above x-axis.

5) The only forces being considered are those due to side acceler-

ation (N) and roll acceleration (p).!y
6) Arm motion limited to rotation about vertical axis except as

restrained by control stick.

I

Fp -Fs

M a M R, ? ___._ __ X (Forword)

Y(Right)|I
Z (Down)

Figure 4. 3 Limb Bobweight Simulation

4-10

Then the inertial moment on the arm (M) due to side acceleration,

N , is such as to make the arm move to the left. We simulate this
y

moment by a stick force, F , as shown, which produces the same
5

moment:

F *R = (Ma '. (4.7)s y

F s -LMg - (4.8)

F -Mg -N
MgR y (4.9)

a

Here, a is y-directed acceleration and -- is N in G-units. This stick
y g y

force and moment will require the pilot to supply an equal and opposite

force/moment to keep the stick steady. Thus he is required to supply

the same counter-acceleration moment he would supply in flight with a

side load.

The inertial moment on the arm (M) due to roll acceleration (p1 is

such that the arm would tend to rotate to the left unless the pilot applies

a counteracting moment. We simulate the inertial moment by a stick

force F , as shown, which produces the same moment:

J ~F"R =(Ma).L 4.0

4R yMa (4. 10)

wherea = B

Then
I

FR J (4.11)

If p is in degrees per second per second then:

F MB (4.12)
Fs 57..3 • R

4-11

As before, this stick force will require the pilot to supply the

proper counteracting moment as he would in actual flight with roll accel-

eration.

The total limb bobweight stick feel force is the sum of that due to

side acceleration and that due to roll acceleration:

* I MBiF - Mg N +
s R 57.3. R (4.13)

If we take some reasonable values for the parameters:

Mg = 10 lbs.

I = 8" (. 67 ft)

R = 1.33 ft

B = 3 ft

We then have

F 5N + .008 p (4.14)
s y

This is the expression used for limb bobweight force in the present

program.

4.5 CONTROL LOADING EQUATIONS

Adding together all of the sources of control loading force discussed

in sections 4. 2, 4. 3, and 4. 4, we now obtain the loading force for each

axis.

The microcomputer task is to calculate the stick (or pedal) feel

force to be input to the force control loop and generated by the control

loading actuator. Information on the A-10 furnished by the Air Force

was for a two-degree-of-freedom system for each axis (see Appendix A).

We have consolidated each axis as a single degree-of-freedom system

as follows:

4-1Z

4.5. 1 Pitch

Fs = .64 Xe + 1.5 sign (X) 2.5 sign (Xe'Xetrim

viscous coulomb friction breakout

friction

+ 3. Nz + .02624 + FF Xp + Ftravel lir.

bobweight feel spring (-6.7 in. aft,
+2. 7 in. fwd.)

+Fvel. lir. (4. 15)

(:5. 236 in/sec)

X = position of stick-grip (fore & aft), inches. (Positive
e aft.)

Xetri m = integrated output of on-off trim switch.

N = dynamic normal acceleration.
z

q = pitch acceleration, degrees per second per second.

F = a piecewise linear function of (X -Xetrirn) with break

points as shown in Table 4.3.

x p = a function dependent on hinge moment. It is primarily
a magnification factor sensitive to dynamic pressure.
(Xp = 1 in present program.)

4.5.2 Roll

F .06 X + 1. 5 sign(X) + 2 sign (Xa-Xa
S a a a trim

viscousficon coulomb friction breakoutfriction

+ 4. 5 (X a-Xatri m) P + 5 N + .008k (4.16)a rm P y

feel spring limb bobweight

I4

:1,8

TABLE 4.3 PITCH FEEL SPRING BREAK POINTS

(XeXetrim) F F

inches pounds
(fo rward)

-2.7 -12.25

-1.5 -7.5

0. 0.

1.3 7.

3.5 12.25
I

5.7 16.0
2

(aft)

i1

4-14

a+

travel lirn. vel. hm.

(A3.1 inch) (=6.5 in/sec)

X = lateral position of stick-grip, inches (positive right).
a

Xatrim - integrated output of on-off trim switch.

N = lateral G-force.
y

= roll acceleration, degrees/sec/sec.

X - magnification factor dependent on hinge moment
P (X = i. in present program).

p

No apparent deadband in roll for A-10.

1 4.5.3 Yaw

F = .905X r + 4. 25 sign (X) + 5. sign (XrSs r rr

viscous
friction coulomb friction breakout

(4. 17)

15. X r + Ftravel lim. + Fvel. lrn.

feel spring (*3.5 in) (-11.9 in/sec)

No rudder trim shown on A-10 data.

No deadband shown.

X = rudder pedal position, inches (left pedal fwd. is
po sitive).

X p = magnification factor dependent on hinge moment
(X = 1. in present program).
P

a

4.6 CONTROL LOADING LOOP

a The University elected to attempt to simulate the entire control

loading loop (pitch axis only) to gain confidence in our understanding of

the system prior to actually wiring up the hardware. The basic part of

the loop is a two-stage, electrohydraulic valve/actuator which generates

4-15

Ii

• "

the feel force for the pilot to sense. Reference 4 discusses this type of

valve. Figure 4. 4 is a block diagram of what we feel is a reasonable

representation of the loop. Note that the expression for actuator torque

is nonlinear so the responses were obtained by an iterative technique.

Throughout the system estimates were made of time constants and

dimensions. The step response of this system is included in Section 5. 2

of this report. This response was obtained by simulating the control loop

on the University's computer. We did not use the airframe equations in

this simulation so airframe variables such as dynamic pressure, N z

N y, q, p, and trim were not available. Also travel limits and velocity

limits were not used.

We begin a brief description of the control loop operation at the

right side of Figure 4. 4 where the pilot force is input to the control stick.

The difference between the pilot force and the opposing actuator force

(FA) causes acceleration of the stick grip leading to stick velocity (X
A e

and position (X e). X e' being the velocity of the stick, determines the

flow rate (Q) through the hydraulic valve.

Stick position and velocity are furnished to the microcomputer for

use in generating the cnommand stick feel force (F s). The test results

shown in Section 5 included only viscous friction, breakout force, and

feel spring force among the components of F.
s

The command force, F , is next compared to the actual actuator
5

force, FA, giving an error signal (F s- FA). The error voltage leads to

valve current, i , and valve spool position, x , through appropriatev sp'

transfer functions as shown.

The actuator steady state torque is a nonlinear function of valve

current, spool position, and flow rate. The steady state actuator gener-

ated stick force, FF, is calculated assuming a control stick length of 20

inches. Since steady state conditions are notarrived at immediately, a

time delay smoothing transfer function converts FF to FA which is the

actual actuator force.

4-16

The nonlinearity in the torque expression necessitated use of an
iteration procedure to obtain convergence for each update of actuator
feel force. The step response shown in Section 5. 2 was for an input ten
(10) pound pilot step force. The response is seen to be very fast as it

must be to be realistic. The force overshoot seen after 9/120 second
is necessary to decelerate the stick and reach an eventual constant stick
displacement.

Constants for Figure 4. 4 (assumed)

K 1 = . 0Z inches/milleamp
T 1 = .0002 sec -1

K3 = 2. inches 3

Ps = 1500. psi. (supply pressure)
C = 20. in3/sec/(pound) I /2

z
Cf = . I inches 2

Tf = .01 sec - I

2 = 0222 pound sec 2 /inch

1

I

I

I

4-17J

47

TORQUEzSign(iv)K(Ps(~~~
FF=I1/20 TORQUE

I VALVE VALVE SPOOL
CURRETi xSp FF

KiorqueI
'TS +i Force -T2S+I FA

ACTUATOR FEEL
FLOW RATE FORCE

MiCRO COMPUTER -Fp

QCf Xe PILOT FORCE

Fs z .64X e+ 1. 5 S ig n(X e
+s +25Sign(X -X .) xI/S IAn

DESIRED +3N\1+.0262q e =F
FEELFFpFrvIlm

FORCE FPFrvllm

PITCH AXIS
NZ TRIM ONLY SHOWN.

ON-OFF

Figure 4.4 Control Loading Loop

4-18

a

SECTION 5

COMPUTER PROGRAM SYSTEM DESCRIPTIONS

The entire control loader software was written in the Intel high-

order microcomputer language called PLM (PL/M-80), with the

exception of the analog-to-digital conversion routine which was performed

in assembly language. The programs were structured into a utility

module, a scan module, and a simulator module. As the name implies

the utility module provided system support in the form of calibration and

test routines, system interface procedures, and system initialization.

The scan module causes twelve of the available sixteen A-to-D converter

channels to be scanned sequentially and the converted values to be placed

in the appropriate RAM locations for later use. The simulator module

contains the frame rate generator, simulator initialization routines, and

the simulator equations themselves.
A

5. 1 GENERAL PROCESSING

Processing starts in the utility module after a reset (push button

reset or power-on reset). As illustrated in Figure 5. 1 the system hard-i
ware is initialized first. The simulator module is entered next which,

in turn, initializes the needed equation parameters before startingI
through the simulator loop. If no request is pending (at the teletype key-

board) the loop is executed 120 times per second, solving equations forI
all three axes. If a request for a change is made by the system operator,

he has the option to exit the simulator processing and enter the execu-

tive." If he elects to make a parameter change he can continue to make

as many changes as he desires before re-entering the simulator loop. If

the operator chooses to leave the simulator, control will pass to the exe-

cutive which will request a program number. Programs 0 through 4 are

self test and calibration routines which, once completed, will pass

5-1

AV
RESIET

A7

[INITIALIZE U
SYSTEM

1

7 INITIALIZE S
SIMULATOR U = Utility Module

S = Simulator Module

SIMULATOR S *LOOP EXECUTED

NO E U S

EXIT NO GET NEWASIMULATO PRAMETE

, s VALUE
I

5 . 0UIZ., 0 T 4

U

Figure 5. 1 General Flowchart

5-2

a

SI control back to the executive. Program 5 is the simulator and, if selected,

will re-initialize all the simulator parameters to their original value

before ertring the simulator loop.

5.2 THE UTILITY MODULE

The utility module contains the main program for the system.

This program initializes the appropriate hardware and software items

in a procedure called INITIALIZE. It then enters (calls) the simulation

loop contained in the Simulator Module. However, if the operator termi-

nates the simulation, the system then returns to the Utility Module and

requests a command from the console operator by typing:

CONTROL LOADER EXECUTIVE
I WHICH PROGRAM?

Depending on the console operator's input, it calls the appropriate pro-

cedure. These procedures include various test and calibration routines

as well as the simulator procedure itself. The table below lists the pro-

cedure which will be executed when a particular input is supplied

* INPUT PROCEDURE

0 MATHBOARD TEST
1 ADC TEST

I 2 GAIN TEST

3 DAC TEST
4 RAMP TEST
5 SIMULATOR

The following subsections discuss the various elements and procedures inI

the Utility Module. Flowcharts for these Utility Module procedures are

contained in Appendix A. The above mentioned procedure INITIALIZE

performs initialization functions for many different hardware items. It

is therefore more efficient to discuss the portions of INITIALIZE with

those respective items.

5

5-3

5. Z. 1 Declarations

The utility module contains two kinds of declaration

statements "literal" and "type. " The literal definitions can be observed

in the program listing and are merely macro or literal word substitutions

for certain quantities. They are grouped according to function and they

also appear in the simulator module so that the same words may be used

in both modules. For example, the teletype input port is defined by set-

ting the word CONSOLE$IN functionally equivalent to the SBC 80/20 port

number of 'EC.'

The type declarations are standard PLM statements

which declare the variable names as being either "byte" or "address"

types. All of the variables are declared as being public so that the simu-

lator module may share the locations.

I S5. 2. 2 Teletype Communications

During the initialization subroutine, INITIALIZE,

the various functions are performed to set up the communication section

of the hardware for teletype usage. There are two hardware components

involved in this section: the 8251 Programmable Communication Inter-

face (PCI or USART) and the 8253 Programmable Interval Timer (PIT).

* I Only one of the counters in the 8253 (counter #2) is

used for communication purposes; it generates the baud rate for the PCI.

Counter #Z is dedicated to the baud rate function and is initialized by first

writing the appropriate control word to the 8253 followed by the 'divide-

by" count (see Section 3.9. l and 3.9.2 of the System 80/20 Hardware

Reference Manual). The control word was synthesized to reflect the

following attributes:

5-4

a

Select Counter #2 (10)
Load LSB, MSB (11)

Mode 3 (11)
Binary Counter (0)

Therefore, the control word B6 (hex) is output to the control word register

at port DF. The baud rate factor ("divide-by" count) is next written to the

counter regir.ter (port DE), low byte first. This baud rate factor is

026316 or 6.1 10. It is determined by taking the closest integer value

which results from a calculation involving the desired baud rate (110 bits/

sec), the 8251 baud rate multiplier (16) and the basic clock period (930 ns).

Thus the baud rate factor is

BRF == 6 10.95 or 6 11110 X 16 X 930ns

With the BRF = 611 the actual baud rate is 109.99 bits per second - very

close to 110.

1 Similarly the 8251 USART is initialized with two

words a node word and a control word (see Section 3. 7, 80/20 Hardware

Reference Manual). The mode word (CE hex) was synthesized for the

following functions:

Baud Rate Multiplier = 16 (10)
Character Length = 8 bits (i1)
Parity Disabled (0
Parity Odd (0)
Stop bits = 2 (1)

The control word is 35 and was synthesized for the following functions:

STh16

Transmit Enable (i
Data Terminal Not Ready (0
Receive Enable (1
Send Break-Normal (0
Error Reset (1)
Request to Send Active (1
Internal Reset (0

Hunt Mode Disabled (0

5-5

.6

a

Both the mode word and the control word are written to port ED; the mode

word must be written first. As described in the 80/20 references, the

data port is EC.

5. 2. 3 Console Input/Output

The communications which are conducted between

the system and the operator's teletype (TTY) is provided by the following

procedures:

CONSOLE$OUTPUT
CONSOLE$INPUT
HEX$OUT
HEX2$OUT
LINE$INPUT
PRINT
CRLF
FIXTOASCII
ASCIITOFIX

The desired communication proceeds one character at a time and thusly
the CONSOLE$INPUT and CONSOLE$OUTPUT procedures perform their

I

respective functions on one character. If the character to be output is a

hexadecimal value (4-bits) the procedure HEXOUT is used to convert the

value to an ASCII character and subsequently call CONSOLE$OUTPUT.

*Similarly, in HEXZ$OUT, a single byte (8-bits) is converted to two ASCII

characters which are output in successior. high order first. If an entire

line of input is required from the operator, the procedure L.NE$INPUT is

executed which places the ASCII character images sequentially into an

array called LINE$BUF and also provides the calling routine with the char-

acter count. The line is terminated by the operator with a carriage return.

On the other hand, if a line of text is to be displayed on the console, the

PRINT procedure is used. This procedure requires the address of the

first character to be displayed. All characters are sequentially output to

the console until an "ETX" (03) is encountered. The CRLF procedure out-

,puts a carriage return (CR) and a line feed (LF) to the console when it is
/ invoked.

I

5-6

*

The FIXTOASCII and ASCIITOFIX procedures

communicate with the console operator and convert data between a string

of ASCII numeric characters and the equivalent 16-bit value. FIX$TOSASCII

takes the value of a parameter called RESULT, converts it to a string of

ASCII numeric characters and outputs the string to the console (preceeded

by a message such as "RESULT ="). ASCIITOFIX performs the oppo-

site function. It accepts a string of decimal characters from the console

(followed by a CR), converts the string to a hexadecimal value and sets

RESULT equal to that value. These two procedures make extensive use

of the above mentioned procedures as well as the EXECUTE procedure

* which is discussed later in this section. The method employed is to suc-

a cessively divide (or multiply) the parameter by a factor of 10. For

I example, in FIXTOASCII the hexadecimal value to be converted is

divided by "multiplier" of 10000 (since the maximum hexadecimal value is

65, 536). The result of the division is a decimal integer (0 to 9) which

forms the first output character. That character (times the multiplier)

is then subtracted from the original value leaving the lower order digits.

* The "multiplier" is then reduced by a factor of ten down to 1000. This

routine of divide- subtract-divide is repeated four more times to provide

5 digits in all. The five digits are then output to the console. ASCIITOFIX

works in just the opposite order: it accepts up to five digits, performs a

multiply-add-multiply routine and places the value in the parameter

RESULT.

I 5. 2. 4 Mathboard Interface

The SBC 310 High Speed Mathboard was supplied by

the manufacturer with an I/O base address of C8 selected. (See SBC 310

HRM, paragraphs Z-8, 2-9.) This address was used without change and

the literal declarations reflect this base address. The memory base

address assignment is under software control and was established as

address FFFO hex at the logical top of memory. (See SBC 310 HRM,

5-7

4 *chapter 3.) The various mathboard functions (e. g. fixed point multiply)

were also defined in literal declaration (e. g. MUL = 0) for later use.

(See SBC 310 HRM, Table 3-2.) The two argument registers of the math

board are 32 bits in length which requires two address-type parameters

for data transfer. The "operand" register (which is also the "result"

register) is defined by two names: OPERAND$IL and OPERAND$IH for

the low and high halves respectively. Similarly, the "operator" register

is defined by the names OPERAND$2L and OPERAND$2H. All four of

these parameters are "based" address-type variables with the addresses

assigned in the INITIALIZE procedure. (See SBC 310 HRM, chapter 3.)

The interface between the mathboard and the system

is handled by three procedures:

0 PERFORM
9 EQUATE
* EXECUTE'

2 PERFORM causes the mathboard to take the action which is defined by the
I parameter OPERATION. For example if OPERATION = 0 a fixed point

multiply will be performed on the values which are in the argument regis-

ters. It then waits for the operation to be complete and checks the error

flags. (See SBC 310 HRM, paragraph 3-6.) If no error resulted, it

*returns to the calling routine. If an error was detected by the mathboard

(e.g. division by zero), PERFORM causes an error message to be dis-

played on the console which states the status code, opcode and the value

of the two operands.
1

EQUATE is a procedure which handles floating

point operations (32-bit operands) whereas EXECUTE handles fixed point

operations (16-bit operands). Both of these routines proved to be too

expensive to use in real-time but they are employed in the MATHBOARD$

TEST and ASCII conversion procedures. EQUATE requires three add-

ress pointers to the 32-bit (4-byte) locations of the destination, operand

and operator for the floating point function. It also requires the operation to

5-8

.. ""' " "' ;' - , .,_ -,' F .-.. _-- . ,_ .---. _ = .' U,

4be defined by setting OPERATION to the appropriate value. EQUATE uses

PERFORM once the operand and operator values are loaded in the argu-

ment registers. The result is placed in the destination location. For

example

CALL EQUATE (. RESUJLT, . RESULT, FPLUS, . TEMP)

will produce the same effect as the following FORTRAN statement:

RESULT = RESULT + TEMPW

EXECUTE operates in a similar manner except

that the actual 16-bit values are passed as opposed to addresses. Thus,

RESULT = EXECUTE (RESULT, TIMES, TEMP)

has the same effect as the following FORTRAN statement:

RESULT = RESULT * TEMP

5. 2. 5 Analog Input Interface

A The analog input chores are performed by the SBC

711 Analog Input board and two software subroutines- ADVAL in the

K 1 Utility Module and SCAN in the Scan Module. ADVAL returns binary

value of the channel designated in its argument list. SCAN is a routine

which permits a range of channels to be converted in a sequential manner.

The SBC 711 board had to be modified by employing

the user selectable options provided. This board, therefore, has the

following characteristics, some of which were modified from the OEM

configuration. The base address remains F700, as supplied. In addition,

the full scale range of + 10v was not changed. The ADC trigger options

were not used because the trigger is under software control. The trans-

fer acknowledge delay was not changed from the preset 50 ns. However,

the "offset binary code" option was selected by reconfiguring the jumpers

uaround pin 67. (see SBC 711 HRM, paragraph 2- 10).

5-9

The software is structured around "based' variables

AICOM, AIFCR, AILCR, AIINT and AIVAL referring to the command

register, first channel register, last channel register, interrupt register

and data registers of the SBC 711, respectively. (See Section 3 of SBC

711 HRM.) The command register is initially reset in subroutine

INITIALIZE.

Subroutine ADVAL merely follows the recommended

procedures for a random channel conversion; that is, AIFCR is loaded

with the desired channel, the conversion is started through AICOM, the

subroutine waits for the status register (AICOM) to indicate EOC, the

conversion is stopped, and the value returned. ADVAL is used in the

ADCTEST (program #1) subroutine which is the PLM equivalent of the

calibration routines ADCRNG and ADCOFF in the SBC 711 HRM (Section

5-5, Calibration Procedures).

For the simulator function, a sequential scan of

the desired channels is performed. A full description of this process is
I

contained in the Scan Module section.

5.2.6 Analog Output Interface

The analog output chores are handled by Intel's

SBC 710 Analog Output Board. The analog output registers on this board

appear as simple contiguous memory locations to the CPU. The base

address F708 hex was factory prewired and not changed. The process of

outputing an analog signal is one of merely writing the desired hexadeci-

arnl value to the appropriate location. The variables DACO, DACI, DAC2

and DAC3 are based address-type parameters which refer to the analog

output registers. Thus, if the value of RESULT is to be converted to an

analog voltage on channel 0, the PLM statement is merely

DACO = RESULT

The only physical modification to the SBC 710 was

to select the "offset binary code" option as described in Section 3. 1. 3.

5-10

r. 7

5. 2. 7 Self Test and Calibration Routines

The Utility Module contains five procedures which

were written to provide a means of testing all three of the peripheral cir-

cuit boards (SBC 711, SBC 724, SBC 310) and of calibrating the analog

input and analog output boards (SBC 711 and SBC 7Z4 respectively). The

analog reference manuals contain specific information pertaining to the

calibration of the various amplifiers and since these units are software

driven the manuals also contain sample programs which can be used for

the calibration procedure. The procedures contained in the Utility Module

are PLM equivalents of the ones in the manuals. The system operator

selects the desired test program on the console by responding to the

Utility Module's request which appears after leaving the simulator loop:

CONTROL LOADER EXECUTIVE
WHICH PROGRAM?

The operator responds by typing in an integer from 0 to 5 which has the

following meaning:

Program Name

0 Mfathboard Test
I ADC Test
2 Gain Test

* 3 DAC Test
4 Ramp Test
5 Simulator

The simulator function will be discussed in Section 3.2.5. The other

functions are described in tie following paragraphs.

5. 2. 7. 1 Mathboard Test (0)

The hardware reference manual for the

high-speed mathboard (SBC 310) does not provide any means of testing

this unit. Of course, there is no calibration required since it is entirely

digital. Therefore, a procedure MATIBOARD$TEST was written which

will accept an integer from the console in the range of 0 to 65535 (Z 16).

5-11

This integer is used to check each mathematical function which the math-

board is capable of performing which includes integer functions, floating

point functions, and the conversions between these functions. That is,

the value supplied by the operator is multiplied by itself, divided by
itself, squared, square-rooted, etc. At the end of the sequence of tests,

the last value is printed on the console and will correspond to the value

supplied by the operator if the test is passed. If the value typed in by the

operator is 0 (zero), the system will type two error messages since

division by zero was performed twice, once in integer and once in float-

ing point. These error messages relate the following:

a) Status (error) code - See SBC 310 HRM, p 3-5

b) Opcode which caused error

c) The contents of the two argument registers after the

error was detected

The operator may also request that the above status information be
1

printed each time the mathematics board performs an operation during

the test. If this is the case, a variable called ERR$SW is set equal to 1;

otherwise, ERR$SW = 0. The procedure PERFORM recognizes this

variable and acts accordingly in typing out the status information. Refer

to Section 3. 3 for a complete description of the console interaction.

This procedure makes use of the

EQUATE, EXECUTE and PERFORM procedures described previously.

It also uses the various console input/output routines and also employs

the ASCII conversion routines ASCIITOFIX and FIXTOASCII, all of

which were previously discussed. Thus the MATHBOARD$TEST proced-

ure is structured almost exclusively from pre-defined routines.

5.2.7. 2 ADC Test (1)

The analog input board hardware

reference manual provides calibration programs which support the

5-12

recuired calibration procedures (see SBC 711 HRM, chapter 5). How-

ever, these programs (SBC 711 HRM, Table 3-3) are written in assembly

language. Therefore the PLM procedure ADCTEST was written which

incorporates all of the features of the assembly language program

ADCOFF (ADCRNG is another name for the same program). This pro-

gram is used to perform the calibrations associated with offset and range

adjustments (SBC 711 HRM, paragraphs 5-7 and 5-8 respectively).

Specifically, this procedure asks the

operator which analog input channel he wishes to look at (channels 0

through F hex). The procedure then continuously reads and displays (in

hex) the digital value of the analog input until a character (any character)

is typed on the console. Control then passes back to the executive. The

net effect which this procedure produces is that of a digital voltmeter

which types the values out in hexadecimal.

5.2.7.3 Gain Test (2)
U

J The GAINTEST procedure was written

to satisfy the need of performing a gain adjustment on the programable

amplifier of the analog input board (SBC 711 HRM, paragraph 5-6). This

procedure incorporates the same features as the assembly language pro-

gram PGAADJ described in the hardware reference manual. When

selected this procedure merely types "PGA GAINTEST" on the console

and then enters a gain switching loop until a character (any character) is

typed on the console.

5. 2.7.4 DAC Test (3)

The analog output board is similar to

the analog input board in that its amplifiers must be calibrated in accor-

dance with published procedures (SBC 724 HRM, paragraph 5-6). The

PLM procedure DACTEST was written to fulfill the software requirements

for such a calibration. When selected, it types the message

5-13

DACTEST
HEX VALUE?

to which the operator must respond with four hex characters such as

5B2C. This hex value is then written out to all four DAC channels which

in turn convert the value to analog voltages at the output. Thus, if the

operator wishes to have a positive full scale voltage (+10v) at the output

he must type 7FFO. If he wishes to have a negative full scale voltage

(-10v), he must type FFFO. The hex values reflect the offset binary

(2's complement) format selected under the hardware modifications. The

last digit is zero because only the most significant twelve bits placed in

the DAC are converted (12-bit accuracy). Control passes back to the

executive immediately after execution.

5. 2.7.5 Ramp Test (4)

The procedure RAMPTEST was written

to provide a dynamic signal on the DAC output channels. This signal is a

sawtooth ramp with a period of approximately five seconds. It is achieved

by simply incrementing a variable and writing its value out to all four

DAC's in a continuous loop.

5. 2. 8 Interupt Structure
I

During the initialization subroutine INITIALIZE

three control words are written to the 8259 Programmable Interrupt
Controller (PIC). The first word is initialization control word ICWI-C

which sets the format interval to 8 (bit F = 0) and the single/slave flip-

flop to single (bit S = 1). (See p 3-107, 80/20 HRM.) This word also

transfers three address bits (A 5 , A6 , A 7) to the PIC. The second word

is ICWZ which transfers the remaining address bits (A 8 - AI5) to the

PIC. The address bits represent the location of the interrupt jump table

in the software; the PIC inserts the lowest address bits (A 0 - A4) auto-

matically based on the interrupt being services. At this writing, the

PL/M compiler requires interrupt routines at the standard locations,

5-14

despite the capabilities of the 8259. The third word written is the opera-

tion control word OCWI which merely enables the desired interrupts.

These words are written to the ports which are designated by the hard-

ware configuration of the 80/20; that is, ICWI-C is written to port ODAH,

ICW2 and OCW1 to port 0DBH.

At the end of each interrupt service routine the "non-

specific end-of-interrupt" control word OCW2-E (20H) is written to port

ODAH. This action clears the particular interrupt in-service (IS) bit in

the 8259 corresponding to the assigned interrupt level.

For a full discussion of the 8259 PlC and to ascertain the

implications of the above actions refer to Section 3. 10. 1 (pages 3-87 to

3-110) of the SBC 80/20 Hardware Reference Manual. Of particular

interest is the information on pages 3- 109 and 3- 110 which describes how

the interrupts can be configured on the 80/20 board itself. The interrupt

structure is used only for frame rate generation which is discussed in

Section 3.2.5. 2.

5.3 SCAN MODULE

The Scan Module is an assembly language program which is invoked

by the simulator module when the values of the analog input channels are
to be read. The conversion of the 12 analog input channels was previously

accomplished with an interrupt-driven PLM procedure (subroutine) and

consumed approxdmately 3 MS of processing time. No advantage was

realized from the interrupt structure since the convert time (37 4S per

channel) was much shorter than the data handling software time. Addition-

ally, the machine code resulting from the PLM statements was rather

inefficient. Therefore, the input scan routine was converted to a non-

interrupt, assemply language program which is capable of converting all

12 analog channels in less than 1 millisecond.

5-15

a

A declare statement in the simulator module establishes the

following address-type (16-bit) variables in contiguous locations in RAM:

PDOT, PITCH, NZ, QDOT, ROOT, ROLL, NY, PPDOT, YDOT, YAW,

PTRIMSIG, RTRIMSIG. The order in which they are declared is the

order in which they occur in memory. The scan module causes input

channels 0 through 11 to be converted consecutively with the data from

channel 0 being placed in PDOT and the subsequent data values in the scan

to be placed in consecutive memory locations (2 bytes each). As a result

the above mentioned variables take on the value of the corresponding

analog input channel.

The scan process is conducted in its entirety when a "call"

is made from the simulator module. The simulator module first initial-

izes the first-channel-register and the last-channel-register. It enables

the auto increment feature and then starts the first conversion. (See

Section 3. Z. 3. 5 for a discussion of the registers involved.) The "call"

is then made to SCAN. The first scan module operation is to initialize

the 8080's DE register with the address of PDOT and the B register with

the channel counter (12). The scan loop is then entered which starts by

checking the analog input board to see if a conversion is in process, in

which case the processor will wait in a loop until the conversion is com-

plete. The channel value is read (placed in the HL register) and a new

conversion is started by writing a 03 hex out to location F700, the analog

input base address: The value in the HL register is then written out to

the destination specified by the DE register which is incremented in the

process. Register B, the channel zounter, is decremented to end the

loop and transfer control back to the status check. When register B

reaches zero, the converter is reset and control is transferred back to

the simulator module.

5.4 SIMULATOR MODULE

The simulator module performs all the tasks necessary to

run the real-time simulation. It contains its own declarations (in

5-16

a
* addition to those of the utility module), frame generation software,

durrmy procedures, lead and lag procedures for each axis, initialization

i Jstatements and the simulation loop itself. The simulator is entered

immediately after a RESET and is also one of the programs (program 5)

which the operator can select under executive control. Upon entering

the simulator, all variable parameters are initialized and the simulator
loop is then entered. The loop is executed 1Z0 times each second, calcu-

lating the forces for all three axes in each loop. The operator may

request a parameter change in which case the simulation is halted until

the desired changes are made. The operator may also enter the execu-

tive program at this point. The following paragraphs describe the proced-

ures associated with the Simulator Module. The corresponding flowcharts

are contained in Appendix A.

5.4. 1 Declarations

Most of the declarations in the simulator modult. ire identical
to those of the utility module and actually reference therr, 5y the EXTER-

£
NAL attribute. Additional parameters are declared which are unique to

the simulator module. The order in which these variables arf declared

governs the order in which they reside in memory and, therefore, tne

order in which they are referenced. For instance, the order of the 11

parameters following PDOT in the declaration determines the "parameter

number" for each when a change is requested.

5.4. 2 Frame Rate Generation

The frame timing is generated by loading counter #0 of the

8253 with the appropriate "frame rate factor" (FRF), counting down to

zero, and allowing the 8253 to interrupt the processor at the terminal

count (zero). The processor, therefore, is free to perform simulator

tasks while the 8253 is counting down. The clock for this function is pro-

portional to the crystal controlled clock for the microprocessor.

5-17

1 That is, the micro's clock is divided by 2 before use by the counter,

resulting in a counter clock period of 930 nanoseconds. For a frame

rate of 120 frames/seconds the frame rate factor is

I
FRF -2 8960. 57

The counter, therefore, is loaded with a value of 2301 16 (8961 10).

Prior to operation, the 8253 is loaded with a command word

in the INITIALIZE procedure. This command word is one which was

synthesized in order to program counter #0 of the 8253. This word has

a value of 30 hex which was produced from the following attributes:

Select Counter #0 (00)
Load LSB, MSB (11)

(0)
Mode 0 (00)
Binary Count (0)

* (See Section 3. 9 of the 80/2 0 ERM for details of the 8253 operation.)

The frame rate function has been assigned the highest avail-

able interrupt priority level - level 1. Therefore, several items had to

be considered to accommodate this interrupt. First, the output of 8253

counter #0 was connected to interrupt request 1 (IRl) of the 8259 Pro-

grammable Interrupt Controller, This was accomplished by connecting

together jumper pins 25 and 35 on the 80/20 CPU Board. Second, the

interrupt mask bit (bit 1) of the 8259 must be unmasked (set to 0) by

writing the appropriate word in the proper sequence to port DB. (See

Section 3. 10 of the 80/20 FiRM.) Thirdly, an interrupt service routine

had to be written to handle the interrupt once it occurs.

The interrupt service routine "FRAME" uses the PLM

interrupt procedure declaration so that the first interrupt instruction is

in memory location 0008. This routine provides the following functions:

1. Restarts the frame counter by writing the frame rate
factor FRF to port DC, low byte first.

5- 18

a

2. Checks for framing errors. The frame rate switch
FRSW is set to zero at the end of the simulator block.
If FRSW = 1 when interrupt 1 occurred, simulator pro-
cessing was not complete and the on-board LED is
flashed to indicate the framing error.

3. The frame rate switch FRSW is set to 1.

4. The logic level bit 0 at 31 (port E4) is inverted to indi-
cate frame time available.

5. The non-specific end-of-interrupt word (20 hex) is writ-
ten to port DA to reset the 8259 "in-service" byte 1
(151).

Framing is accomplished through the use of the parameter

FRSW. At the beginning of each frame (first statement after the label

SIMLOOP in the listing) FRSW is set to zero. At the completion of the

equation processing the processor waits in a loop for FRSW to change

from zero. This occurs in the interrupt routine FRAME so that when

control returns to the "idle loop" FRSW = 1 and the loop is exitted.

A unique feature about this control loading simulator is the

I service provided by bits 0 and 1 at the digital interface on the SBC 80/20.

Bit 0 is inverted each time FRAME is executed (120 times per second)

r I and, when connected to an oscilloscope, it indicates the amount of frame

time available. Bit 1 is set high at the beginning of each frame (near the

I label SIMLOOP in the listing) and it is set low at the completion of the

I* equation processing and thus it indicates the amounmt of frame time consumed.

* 5.4.3 Dummy Procedures

The simulator module employs several of the pro-

cedures which were defined in the utility module, namely PRINT, PER-

FORM, ASCIITOFIX and FIXTOASCII. Furthermore the SCAN

procedure from the scan module is also invoked. The dummy procedures

declare that the actual coding resides "external" to the simulator module.

(See Section 8. 1, PL/M-80 Programming Manual.)

5-19

am

5. 4. 4 Simulator Processing

When a RESET occurs or when program 5 is selected by the

operator in executive mode the procedure SIMULATOR is called. The

simulator variables and coefficients are first initialized to the appropri-

ate values, and the frame generator is started. At this point the proces-

sor enters the simulator loop, SIMLOOP. The first action taken is to

perform a complete input of the variable parameters through the routine

SCAN. Once this task is accomplished the processor begins to calculate

the output forces: pitch, roll and yaw in that order. The processing for

each axis proceeds in a manner as shown in Figure 5. 2. As each force

is calculated, its value is written out to the respective DAC and proces-

sing moves on to the next axis. After the yaw computations are complete

and the yaw force has been written out to the yaw output channel, a loop

is entered which causes the simulator to wait for the end-of-frame inter-

rupt as explained in Section 5. 4. 2. The simulator then checks for a

request from the system console (teletype). If no request is pending,

* control passes back to the beginning of the simulator loop. If a request

is pending (a key, any key, was depressed), the operator is asked whether

a parameter change is being requested. If the reply is negative, control

passes back to the executive in the utility module. If the reply is affirma-

tive a parameter change routine is entered which allows the operator to

examine the present value of and change the value of as many parameters

as is necessary. Upon leaving this routine control passes back to the

beginning of the simulator loop. Each of these blocks will be discussed

in detail within the following paragraphs.

5. 4. 4. 1 Simulator Initialization

When control passes to the simulator as a conse-

quence of a reset or the selection of program 5 in the executive all of the

necessary simulator parameters are initialized to their original value.

These parameters all have storage locations in ramdom access memory

5-20

4 3 ENTRY

IITIALIZE

SCAN

INPUTS

PITCH
EQUATIONS

ROLL
EQUATIONS

YAW
EQUATIONS

YE

rl
(RAM) so that they may be changed by the operator as necessary. Further-

more, all of the changeable coefficients reside in contiguous RAM locations

so that they may be selected by number for a change. (See Section 6. 6. 3. 2.)

The "by-the-number" method was chosen over a "by-name" method due to

its very simple implementation scheme and very significant reduction in

storage requirements. The order in which they appear in the declaration

statements determines the respective reference numbers. There are a

total of 224 such parameters but riot all are used in the present simulation

because the full capability of setting ten spring breakpoints is not fully

utilized. These parameters and their respective numbers are included in

Table 5. 1 for completeness.

Several other parameters are also initialized

which are used during processing for intermediate and final value stor-

age. Furthermore the frame generation is started by a simple call to

the FRAME procedure. This procedure, as described in Section 5. 4. 2,

u loads the hardware counter with the frame rate factor which starts the

frame timing. When the counter reaches zero an interrupt occurs which

* causes this FRAME procedure to be executed again but this will only

occur at the end of the simulator loop. The initialization process is

*concluded when all of the bits on output port E4 (hex) are set low. Bits

0 and 1 are used to monitor the frame times as described in Section 3. 3.

5.4.4.2 Simulator Loop

When control passes to the beginning of the simula-

tor loop at SIMLOOP, a small amount of processing is performed in

preparation for performing the scan of the analog input channels. The

first operation is to set the frame rate switch FRSW = 0. This allows

the simulator to pause at the conclusion of the calculations until the

FRAME interrupt occurs to set FRSW = 1. The next operation sets the

"frame time used" bit, Bit 1 at 31, to a high level. This bit will be set

low at the conclusion of the simulator calculations as an indication of

frame time used. The next few statements initialize the analog input

5-22

p .-- - __o__.____________"___

1 . z . = _ , . .: _

. - -

-- . L .. -_-,- ,. -CL4
t 6*

LL L . - LU. U. CL-$. .
C4 L UW W wi JU 4 LL L

! ... - ' . _- tw , ,.. Lf- .:, . ,, . .-I J"r " , . . -,u

i - ..,.,''. " -- o :- .- . . ., _ - ,' ,~ - - - -

z =t = .

,_L.- w-

. :. r .,i - - _ ,,- - __ : .,4.
7, ,

1-rz LL L t- C CL Z.-C,

C- .. .7 *7 M.UTL4 LL L AZ "- W C . a

- LL L6 CL C.. LL CL C, CL , a: T T T ".: . .-Z. . : - -: IL L . " -: . -. -. L -. C"

C- -4 "M 'T Ir, ; _,I - , , r,: ,'- r U) k4 , kb , u. ki. r' -". -- 4 N f!- 7, if T

; ~ ~~~~~~~~ ~ ~~~~~~~~~ (_,- .- ,,,..ur"...:,..o .-.. ? .. ,!

co Cj .. , ,, : o , ,
N- -4,, ..I (NJ 1, _- 0 . . 7" 4C

C. W' I_ ". a f--, . I "" - - . , ,1 - 1 t ;" :

ca r, Q 75' 17 , , ,,, ,7., V., ,,7 V-,:,0'.Y 0 M 0 c C Cv,-7 T

rl , .. I? u -, ,C , ., y . -. ,.1 .r,;, - ,.i ,.0 1 .C , .,1 r" T V. f r - r' .7 - -4 * j r, -t o -.: r, co -. c j(jf

5-23

6- N U LLIU n L PLLL

1- -LIJ t:-C'wL,

*bt' Z:, 4
LL az C±4 I- L : nC

LL Wr LLL "- ..- U. CIQCL.'Z.. n

_ j J T -. I-- - 1 - P.- j u n

-I LS e-' _- UJ r LC CW M ' -CL-C

x a r lla rL L.

M- CL -J z -. CL
C .~CIC CJ6'C 4(' (:dJ' al D a

I.-.

CL- CL - - Ff--u

V' -4 .-- 1i -4 -4L- , .. .

-W. + 4ta *4

it It .. L

17e tl v -4 -.4 -4g. -
CIItCC 10C 0u aI Ill Qn . I

UL 14 It111 In

'j, f.,0 I it -i i - w
IfMaD.,L

11I qTTI 1 Zi fI 7 0C : =Iz.
C&- . j- f1 1I . WL z Qar r- Ti

-J - Jj J L .L .C 1 I 1 - . 1 J -1J U

'n CLI Q. 0 zc _ CL - - - -LLC -

board as described in Section 5.2.5. The actual scan is conducted by

simply calling SCAN, the assembly language routine described in Section

5. 3. At this point the pitch equations are entered. The following section

describes the operation of the pitch equations but this discussion can be

extended to the roll axis and yaw axis equations as well. In fact the roll

and yaw equations are duplicate copies of the pitch equations with the

appropriate coefficients substituted. (The pitch coefficients can be re-

cognized by a "P" in the variable name such as KPVISC. The roll and

yaw equivalents are KRVISC and KYVISC respectively.) The yaw equations

do not require a solution involving bobweight effects. Therefore, state-

ments involving the bobweight effects which appear in the pitch and roll

sections are deleted from the yaw section. Similarly, the yaw axis

(rudder pedals) required no trim capability so the statements pertaining

to trim rate are not included in the yaw processing but yaw trim effects

are maintained so that the operator can adjust the trim from the console.

1 These are the only differences between the processing of the three axes.

i Therefore, the description of the pitch processing is sufficient to describe

1 all three axes.

5.4.4. 3 Pitch Processing

The pitch processing is illustrated in Figure 5. 3.

The displacement direction is determined first so that it may be compared

to the limit in the respective direction. If a limit is exceeded the appro-

priate limit calculations are made and the resulting value is output to the

I corresponding DAC. If the displacement is within limits it is checked

for a value which might lie within the deadband, in which case the vari-

ous dynamic stick calculations are bypassed. On the other hand, if the

displacement is out of the deadband those terms are calculated and, in

any event, the bobweight forces are calculated before the force is output

to the DAC. Each of the specific areas of the pitch processing will be

discussed in detail in the following paragraphs.

5-25

54 ENTRY

NO NO' NYES PITCH
DEADBAND

NO

CALCULATE CALCULATE CALCULATE
FORWARD viscous AFT LIMIT

LIMIT COULOMB FORCESFORCES BREAKOUT
I SPRING

TODC OWIH TO DAC0
OPOUTPUT~~~~~FORCE CLUAEOTUTO ACO[BBWEGE FOC

CTO
DAC0

START ROLL
' CA LCULA TIONS

Figure 5. 3 Pitch Processing Flowchart

5-26I,

I

5.4.4. 3. 1 Travel limit

The first operation is to evaluate the

displacement for exceeding one of the travel limits. If the pitch is nega-

tive (meaning the stick is forward) control passes to the label NPITCH;

if it is positive the evaluation is made in sequence. It should be mentioned

here that "negative" means a hexadecimal value greater than 7FFF which

is consistant with the offset binary (Z's complement) convention set up

on both analog boards. In either case the pitch is compared with the

appropriate limit (PLIMAFT or PLIMFOR) and if it is determined to be

within limits control is passed to the label PITCH$DEADBAND for further

processing. If the limit has been exceeded then the difference (the

amount in excess) is multiplied by a gain factor KPLIMF. The result of

this multiplication is tested for an overflow (a value greater than the

positive limit). In this case an overflow would occur during the subse-

quent integration if the result was greater than 3FFF, half the offset

binary limit. If an overflow is detected then the maximum opposing force

is commanded (8000 hex for a positive displacement, 7FFF hex for a
negative displacement) and command passes to the roll equations. If no

overflow is detected then command passes to the procedure PITCH$FORCE

which applies the compensation to the force value. The result of the

above multiplication (the amplified displacement excess) is passed to

this procedure with the proper sign (negative for aft displacement, posi-I
tive for forward displacement) through the general address-type variable Al.

The PITCH$FORCE procedure provides

a lag term by integrating (adding) the present value with the previous

value and it provides a lead term through a subsequent procedure called

PLEAD. The intergration routine can accomodate up to 20 terms but the

present configuration only requires 2 which is governed by the value of

KPLIMLAG. The lead factor is added by employing the pitch velocity,

PDOT, multiplied by a gain factor KPLIMLEAD. However, due to the

fact that the multiplication must be performed with positive numbers the

5-27

velocity is first tested for polarity and the absolute value of PDOT is

loaded into the operand register. The multiplication is performed and

a check for an overflow is again made. The resultant lead term is added

to the integrated lag term and the pre-limit value of the pitch force,

PTOT. PTOT is included so that the spring and other linear forces are

incorporated in the overall force value. A final check for overflows is

made before the force value is written out to the pitch output channel,

DACO.

5.4.4.3.2 Deadband

If the pitch displacement is not out of

the travel limits, control is passed to the label PITCH$DEADBAND. At

this point the trim signal PTRIM$SIG is tested to determine whether the

pilot is commanding trim and, if so, the &rection of the command. A

forward trim command is designated by a +10 volts on analog input chan-

nel 10; an aftward trim command by a -10 volts. The discrimination of
Vthis signal is made above +Z. 5 volts (8192 decimal) and below -2. 5 volts
a

(57344 decimal). The trim is thereby shifted at a rate of approximately

one inch/second by adding (subtracting) the pitch trim rate factor,

PTR.IMRATE, with the previous trim value. It must be noted that

PTRIM is positive aft, negative forward. Processing continues, regard-

less of the trim processing, by initializing the total pitch force variable

PTOT to zero. A check is made to determine whether the stick is within

the deadband. Trim is incorporated with the pitch value in this determi-

nation since the deadband travels with the trim setting. If the net value

is positive a comparison is made with the aft deadband limit, PDBANDA.

If it is negative, the comparison is made with the forward limit PDBANDF.

If the stick is determined to be within the deadband there is no need to
calculate any of the linear parameters so control is passed to the bob-

weight equations. On the other hand if the stick is in the linear region

processing progresses sequentially.

5-28

5. 4. 4. 3. 3 Spring and breakout forces

If the stick is past a deadband limit,

the absolute value of this net linear distance is used to determine the

spring and breakout forces. That is, the processing is divided at this

point based on this net value so that the absolute value will be used and

so that the proper spring coefficients are used. The net value is used to

also determine which interval of the non-linear spring is to be selected.

A comparison is made with the spring breakpoints, the array KPSBRKF

(or KPSBRKA), and the appropriate spring constant is selected from the

array KPSPRINGF (or KPSPR.INGA). This net distance is multiplied by

this spring constant and the appropriate offset element from the array

KPSOFFF (or KPSOFFA) is added to the total force PTOT. In addition,

the breakout force must be added to PTOT before moving on to the other

terms.

Breakout was determined to require
I

lead and lag compensation around the point of the break. The lag term

is incorporated by letting the value of the breakout force be equal to
I

twice the net displacement distance past the deadband limit until this

force reaches that of the breakout parameter KPBRAK. The lead term

is incorporated to provide a snapping sensation at the break point. This

is done by adding the velocity multiplied by a gain factor called KPBRK-

LEAD to the total force PTOT. lowever, this lead term is only added

if the stick is within 0. 1 inches (328 decimal units) of the breakpoint.

Processing subsequently passes to the friction equations regardless of

the processing path taken through the spring and breakout forces.

5. 4. 4. 3. 4 Viscous and coulomb friction forces

The viscous friction forces are cal.cu-

lated by simply multiplying the abosulte value of the velocity PDOT by the

viscous coefficient KPVISC. The coulomb funtion, however, required a

small lag term initially. Therefore the force value (variable A2 at this

5-29

-- J

point) is set equal to the velocity until the value reaches the flat coulomb

force value KPCOUL. Both force values are added to the force total PTOT.

5.4.4. 3.5 Bobweight forces

There are two bobweight force terms

to consider. The first is the term due to the normal acceleration of the

aircraft which is passed to the microcomputer from the host computer

and is named NZ. This NZ term is simply multiplied by the appropriate

coefficient KNZ to produce the resultant force which is added to PTOT.

Similarly, QDOT, the angular airframe acceleration from the host, is

multiplied by its respective coefficient KQDOT and added to PTOT.

5. 4. 4. 3. 6 Force integration and output

An empirical study revealed that the

force value in the linear stick region from the deadband limit to the

travel limit should be smoothed by integrating. Therefore, the value

which is finally written to the DAC is the average of the present calcula-

ted value and the previous value. This averaging is performed by divi-

ding the present value by 2 (shift right one bit) and adding this value to

the previous halved value. The resultant value is written out to DACO

and the present halved value is saved for the next frame. At this point,

processing passes on to the roll equations and subsequently to the yaw

equations.

5.4.4.3.7 End-of-frame routines

After the yaw equations are completed,

a series of steps are taken which terminate the processing for the pre-

sent frame. First, Bit 1 at Jl is brought to a low state which, when

viewed on an oscilloscope signifies the end-of-frame. Secondly, the

remaining count is read from the frame generator counter to provide an

exact value for frame time remaining. This operation was used during

development under ICE-80 control and has no function for the real-time

system. Lastly, the wait loop is entered until the end of frame interrupt

5-30

4occurs. (See Section 5. 4. 2.) At this point control passes back to the

beginning of the simulator loop at SIMLOOP unless a console request is

pending from the operator. If such a request is pending the actions

described in Section 6. 6. 3. 2 will be taken.

-1

.4 I

5-3

SECTION 6

COMPUTER PROGRAM SYSTEM USERS GUIDE

The hardware items which were procured for this project were

strictly off-the-shelf components. These components were capable of

being modified to a certain extent. However, the generalized nature of

this equipment was not affected by any of the modifications which were

performed. The equipment was designed to be largely software config-

ured. This section, therefore, describes the software which is necessary

to set up the hardware components for this project, perform utility func-

tions, and conduct the real-time simulation.

6. 1 GENERAL INFORMATION

The entire control loader software was written in the Intel high-

order microcomputer language called PLM (PL/M-80), with the exception

of the analog- to- digital conversion routine which was performed in assem-

1 bly language. The programs were structured into a utility module, a

scan module, and a simulator module. As the name implies the utility

module provided system support in the form of calibration and test rou-

tines, system interface procedures, and system initialization. The scan

module causes twelve of the available sixteen A-to-D converter channels

to be scanned sequentially and the converted values to be placed in the

appropriate RAM locations for later use. The simulator module contains

the frame rate generator, simulator initialization routines, and the

simulator equations themselves. The executable machine code was

placed in PROM (programmable read only memory). The variable data

and equation coefficients are placed in RAM (Random Access Memory).

6-1

-VI

6. 2 SOFTWARE DEVELOPMENT

The software, including both the PLM and assembly language

modules, was developed on an Intel MDS (Microcomputer Development

System). The complete system development required the following sys-

tem components:

o MDS with 64K of memory
o Dual density floppy disk system (dual drive)
O System console (TTY)
o PROM programmer
" In- circuit- emulator (ICE-80)

o Line printer

The MDS supports PLM with a coupler called PLM80 and an

assembler called ASM80. (The reader is referred to the appropriate

language and/or operator's manual in Volume 2 of the Computer Program

Documentation (CPD).) Furthermore, the MDS links the various modules

together (including the PLM library module) with an Intel program LINK.

The linked program is subsequently located in the appropriate memory

addresses with another Intel program LOCATE. (See ISIS II User's

Guide.) The executive code was placed in PROM by employing Intel's

* program UPM (see Universal PROM Mapper Operator's Manual). During

the development phase, the memory and CPU of the System 80/20 was

emulated by the MDS through the use of Intel's ICE-80 In-Circuit-Emulator

and its associated software program called ICE80. (See ICE-80 Hardware
A

Reference Manual and Operator's Manual.)

6.3 SIMULATOR EQUATIONS

A great number of tasks are accomplished in the SIMULATOR

procedure and its associated procedures. However, before discussing

the specific mechanisms involved, a general discussion is needed in

order to relate the approach taken to the overall problem. Similarly it

is necessary to discuss equation scaling and to relate the actual micro-

computer values associated with each parameter.

6-Z

Each of the individual control loading force components in some

way models an element of the aircraft control system. These forces are,

in general, additive as shown in Figure 6. 1 even though they may be the

result of non-linear processes. However the total solution requires that

these forces be logically connected to accurately represent the fully
integrated control system.

As an example of the microcomputer's flexibility, consider the

forces generated for a single axis (e. g. pitch control) which has a dead-

band due to rigging slack at the control stick. The pilot would therefore

experience nearly zero force within the deadband which is described as

follows:

F T [F + F + F + F]U(DB)
TOT SP VI GO BR (6. 1)

,+ FT + FVE + FA
TR VEL AG

where the above terms stand for total, spring, viscous, coulomb, break-

I out travel limit, velocity limit and aircraft related forces respectively.

The unit operator "U" indicates that the quantities within the brackets are

nil in the deadband.

As an alternate example, consider a case where the rigging slack

is remote from the stick. The coulomb friction due to pully drag may

then be placed outside the influence of the deadband with the resultant

force equation

F TOT = [FSP + FVI +F BR]U(DB)

(6. 2)
' + FO + FT + FVE + FA

C O TR VEL AG

These two examples represent wiring differences in an analog system

but only software differences in a digital system, an important consider-

ation in a research or development environment. For the A- 10 model,

the deadband is very small but follows the format of Equation 6. 1. The

6-3

ELZCTRO- _Force_ Stick

FRICTION

COUtLOMB
FRICTION

VELOCITY
LIMIT

SPR.ING

TRAVEL

A LIMIT

BREAKOUT -

____ ___ ___ ___ ___ ___ AIRFRAME

* COMPUTER

Figure 6. 1 Force Component Diagram - Single Axis

6-4

4 complete pitch force equation (from Section 4.5. 1) then becomes

FTOT = -[Fspp + + FCOp + .64k p]

spring breakout coulomb viscous (6. 3)

U(DB)p + FTRp - (3N z+. 0264)

deadband travel bobweight (aircraft)

where X is the velocity in inches-per-second, N Z and i are the normal

and angular accelerations from the airframe computer which produce the

control system bobweight effects. The force is calculated in pounds and,

* of course, requires a sign change to produce the required opposing force.

Equation 6. 3 is obviously stylized and requires special handling due to

* Ithe non-linearities involved.
* I

In order to handle the non-linearities of such a system, the fre-

quency response of the control loader must be considered. The nominal

20 frames-per-second for digital simulators is usually sufficient to make

the pilot believe that he is flying in a parallel, analog world as evidenced

by his visual displays. However, the pilot's tactile mechanism is cap-

*able of much higher frequency response. Empirical studies conducted on

the McFadden control loader revealed frequency components of 1000 Hz

and higher. As one might expect, these components are experienced at

the breakout and travel limits where forces suddenly change. To satisfy

the ground rules of information theory put forth by Shannon, the micro-

* computer should ideally be framing at a 5000 Hz rate or better. How-
I ever, this project demonstrated that quite acceptable results can be had

at 120 frames-per-second by judiciously choosing compensation schemes.

* S That is, by optimizing lead, lag and gain coefficients in the individual

component force calculations relatively sharp breakouts and stops were

obtained.

Various techniques were attempted to achieve the proper compensa-

tion, including a Tustin recursion method to approximate the desired

6-5
IN

transfer function. However, the final product was a result of an educated

cut-and-try effort. For example consider the travel limit force compo-

nent which can be expressed mathematically as a recursion relationship

FTRP = KP[Xp(N) + X(N- 1)) + XL p (6.4)

In the digital implementation, the needed lag term is obtained by employing

both the present frame value for travel limit displacement X (N) and the
p

previous frame value X (N- 1). The gain is controlled by the value of Kp p
and the needed lead term is obtained from the available velocity signal

X which is modified by the constant KL. The unscaled magnitudes of

K T and KLP and the number of terms in the recursion portion of the lag

component were determined empirically with the final values set at K = 6p
and KLp = 2. The breakout term of Equation 6. 3 required a slight lag

compensation augmented by a lead term (KBp 0.3) and was empirically

structured as

FBRp = ZXp +KBpXp for 2 IX < Z.5
', (6.5)

= 2.5 sign (Xp) for 2 IXpI. (. 5

Similarly, the coulomb friction term required compensation to offset a

tendency to "dither" because of its dependency on the sign of the velocity.

In this case a simple lag was implemented by employing the velocity

value as follows:

SFCOp = k"for J 1_5

(6.6)
= 1.5 sil- for IXI"1.5

The equations executed by the microcomputer for each of the

respective axes are summarized as follows:

Pitch

Refer to equations 6. 3, 6.4, 6. 5, and 6. 6 above.

6-6

U Roll

FTOTR -[4 .5XR + FDRR + FCOR + . 06XR]U(DB)R

spring breakout coulomb viscous

FTRR - (5N +.008)

travel limb bobweight

2FR 2 xR + KB Rfor 21 X .°
R(6.8)

2. 0.sign (X R)for 2 1~ R ZZ

forr

FOOR R R 1.
for I I~l~s(6.9)

1.5 sign (X) fortkj 1.5(

FTRR = KII [XR(N) + XR(N- 1)) + KLRXR
(6. 10)

whereK = 6 and KLRZ

Yaw

FTOTy -[15X + F + FCOy + . 905k U(DB)y - FTRy (6. 11)y FT~ BRy

FBRy =ZXy+KBYXyfor
I Xy 5.0

(6. 12)

5.0 sign (X)for 2 IXy -

FCOy y for Ixy 4.25
(6. 13)

4.25 sign (Xi)for

.
4.135

FTRy K y[Xy(N) + Xy(N- 1)] + KLyXY (6.14)

where Ky 6 and KLy =Z

I4

,4
6-7

- r~ C t

4 U6.4 EQUATION SCALING

The first step in scaling the equations was to properly determine

sign conventions. Using the McFadden control loader it was determined

that the pitch, roll and yaw axes are positive in the aft, right, and right

directions respectively. That is, the position, velocity and force vectors

for the pitch axis (for example) is positive aft. (Refer to Table 4. 1 and

Figure 4. 1.) To further clarify this point consider a spring force acting

on the pitch stick axis. A positive (aft) displacement will result in a

negative (forward) force.

The second step in the scaling process was to determine the input

and output sensitivities and then formulate these sensitivities and the

equation coefficients to obtain the microconpuiter parameters. On the

input side, the position and velocity values (for all axes) are related in

inches and inches/second, respectively. The force output is related in

pounds. The microcomputer converts voltages to/from digital values

through its Analog-to-Digital Converter (ADC) and its Digital-to-Analog

Converter (DAC). Both of these devices have a 12-bit, bilateral (+10 v)
1

resolution. However, since the 8080 microcomputer operates on multi-

pies of 8 bits, the converter bits are placed in the most significant

positions of a 16-bit word. Therefore, the full range of 20 volts (+10 v)
16

can be represented. in 15 bits or 2 (65, 536) counts. In other words,

the A/D conversion factor is 6553I COUNTS . The controlS20v V r37.

loader sensitivity terms, therefore, can be expressed as digital values

and these are shown in Table 6. 1.

In order to perform the calculations in the microcomputer, each

equation coefficient must be conditioned by the proper input and output

sensitivity values. For example, if the viscous friction constant was

. 64 lbs/in/sec, then the digital value which represents the force result-

ing from a digital velocity PDOT is

6-8

TABLE 6. 1 INPUT/OUTPUT SENSITIVITIES

Control
L Voltage Digital
Loade Sensitivity Sensitivity
Un its __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Pitch

1 v counts
Displacement inches v v 3277 cn

1 in i

in 1 v counts
Velocity sec 5 in/sec 655 in/sec

1 v counts

Norm. Acc. G's 1--G3277 G

1 dej v counts
Rot. Acc.e 4 deg/sec8 deg/se

l v countsSForce lb --1 218 l15 lb ib

Roll
S1 v counts

Displacement inches i in 3277 in

V in 1 v counts

Velocity sec 6 in/sec 546 in/sec

1 v counts
Norm. Acc. G's 1- 3277I G G

de 1 v counts
Rot. Acc.2sC 2 deg/sec4 1638 deg/sec2

1 v counts
Force lb 10 lb 328 lb

Yaw

1 v counts
Displacement inches 3771 in in

in 1 v counts
Velocity sec 5 in/sec 655 in/sec

1 v countsForce lb 20 lb 164 lb

6-9

LB 28 COUNTSLB4 218
IN/SEC LB PDOT counts

VI 65 -COUNTS
IN/SEC

= -. 2133 PDOT counts (see Table 6. 2)

In other words, the digital value PDOT would be read from the A/D con-

verter and then multiplied by the dimensionless microcomputer coefficient,

0.2133. The resulting value is then complimented to give the proper sign

and thus produce the digital component due to spring force FVI, FVI may

then be added with other components before being written to the Digital-

to-Analog Converter (DAC).

To perform the above multiplication ordinarily requires that the

operation be carried out in floating point format. The input value PDOT

must be converted to floating point, the multiplication performed, and

the result converted back to fixed point (integer) format. This is a very

time consuming process and, therefore, a technique was devised to pro-

duce the desired product by integer multiplication. The SBC 310 High

Speed Math Board produces a 32-bit integer product from two 16-bit

integer operands. This 32-bit product can be considered to consist of

a low order 16-bit word and a high order 16-bit word which as a weight
16

2 (65536) times larger than the low order word. The control loading

calculations must always result in a 16-bit value since the DAC only

accepts 16-bits. Ordinarily, the desired result of a multiplication

involving an operand (PDOT) which is less than 65536 and a coefficient

(e. g. 0. 2133) would itself be less than 65536 and it would reside in the

low order word of the SBC 310. However, if the coefficient is scaled up

by a factor of 65536 then the desired result will reside in the high order

word. The microcomputer coetilcient in this case is

KPVISC = 0.2133 X 65536 = 13981

The equation implemented in the microcomputer is then

6-10

FV = - HIGH (KPVISC. PDOT) COUNTS
VI

where "H1IGH" refers to employing the high order 16-bit word of the 32-

bit result of the SBC 310.

Figure 6. 2 illustrates this integer multiplication algorithm which is

used throughout the simulator processing. The coefficient KPVISC is

loaded in the lower sixteen bits of operand register 2 on the high speed

math board. Likewise, the absolute value of the velocity PDOT as read

from the ADC is placed in the lower sixteen bits of operand register 1.

The integer multiplication operation "TIMES" is invoked (via the PER-

FORM procedure) and the 32-bit product of the unsigned multiplication

(the reason for using the absolute value) is placed in operand register 1.
16Since KPVISC was scaled up by Z the properly scaled product is also

scaled up by 2 16 and therefore resides in the high order half of register 1.

The net result of this technique is a very distinct speed advantage:

200 microseconds for a complete integer multiplication versus 1000
d microseconds for a complete floating-point multiplication (float/fix

conversion included). All calculations are now carried out in the micro-

computer in integer format. Table 6. 2 contains the values of pertinent

coefficients for microcomputer processing. The other terms (without

scaled values) are parameters in the total force output but are not coeffi-

cients for multiplication. For example, if the pitch coulomb value of

1. 5 pounds is to be added to the total force, then the integer value of 328

(1. 5 LB X 218 COUNTS) is added to the integer force value whichI LB

eventually is written to the output DAC.

The springforce modeled by the microcomputer can be either

linear or non-linear. In the case of the A- 10 the pitch axis spring is the

only non-linear force producer. The other axes, roll and yaw, are

linear. Furthermore, the pitch axis is also non-symmetrical in the

fore and aft forces which it produces.

6-11

Q Qz

E-44z 4-

- Co

z .2

0 12

TABLE 6. 2 IvfCROCOMvPUTER COEFFICIENTS

TEMVALUE SCALED INTEGER VALUE
VALUE (X 64K)

KPVISC 0. 64 lb/in/sec .2133 13981

KPCOUL 1. 5 lb -328

KPBRAE 2. 0 lb -437

PLIMAFT 5. 7in -18678

PLIMFOR 2. 7 in -8847

KNZ 3. 0lb/G .200 13107

KQDOT 0. 026 ib/deg/sec 2 0069345

KRVISC 0. 06 lb/in/sec .036 2359

KRCOUL 1. 5 lb -492

KRBRAK 2. 0 lb -655

KRSPRING 4.5 lb/in .45 29491

RLIMR~T 3.1 in -10158

RLIMLT 3.l1in 10158

KRVLIM 6. 5 in/sec -3550

KNY 5. 0 lb/G . 50 32768

KPPDCT 0. 008 ib/deg/sec .0016 105

KYVISC 0. 905 lb/in/sec 2263 14827

KYCOUL 4. 25 lb 696

KYBRAK 5. 0 lb -819

KYSPRINC" 15.O0lb /in .75 49152

YLINMT 3. 5 in -11468

YLIMLT 3. 5 in 11468

a 6-13

The general procedure which is followed to produce the spring

force values is that of calculating a straight line if the form

y = rnx + b

where "Im" is the spring coefficient (slope), "x" is the displacement, and

"b" is the offset force. For a totally linear spring the offset "b" is zero.

Non-linear springs, on the other hand, are calculated in a piecewise

manner where the first segment (nearest the origin) will have an offset

"b" equal to zero and all other segments will have a non-zero offset.

Figure 6. 3 illustrates the piecewise approxdmation of the pitch spring

force curve. The various breakpoints and offsets are shown on the curve

and the spring coefficients were calculated from the slope of each seg-

ment. The decimal values reflect the real world parameter and the

integers are the values which we.:e used in the microcomputer calcula-

tions. Table 6. 3 summarizes these microcomputer parameters.

TABLE 6.3 PITCH SPRING PARAMETERS

SEGMENTS
I

Name 1 2 3 4 5

KPSOFFA 0 851 1373
KPSBRKA 0 4260 11469

KPSPRINGA 23522 10427 7445
KPSOFFF 0 341
KPSBRKF 0 4915
KPSPRINGF 21840 17300

These parameters were placed in arrays corresponding to the names at

the left and the array length obsiously corresponds to the number of

segments in the curve. As an example of a spring force calculation

within the microcomputer consider a situation where the stick is displaced

2 inches aft. The converted digital value PITCH would be 6554 (2 IN X

3277 COUNTS). The microcomputer determines that this value lies in
IN

segment number 2 on the spring force curve. The final spring force

6-14

FORCE Slo-oes Lb/In KPSPRING (X 65K)

(LBS) 1 5.38 23522
2 2. 39 10427
3 1. 70 7445
4 5. 00 25199

-12.2Z5 lb 5 3.96 14830
(267-6)

1(1638)

(4260) (11469) (18678)
1. 3 in 3. 5 in 5. 7 in

'*1 (341)AT

13 - 314 5 6 POSITION
2. 7 in 1. 5 in (IN)
(8847) (4915)1

(851)

(1373)
7 lb N o

1 (1529)

10--

12. 25 lb,-

(2676)

16. 0 lb -- - - -

(3495)

Figure 6. 3 Pitch Spring

6-15

digital value is calculated by integer multiplying the PITCH value by the

slope KPSPRINGA(2) and adding the offset KPSOFFA(2). Thus

FSP = HIGH (KPSPRINGA(2)" PITCH) + KPSOFFA(2)

= HIGH (10427 6554) + 851

= 1043 + 851 = 1894 COUNTS (8.69 LBS)

6.5 EQUATION IMPLEMENTATION

The equations of Section 6. 3 are implemented in the final software

in a form such that the microcomputer and the high speed mathematics

board perform unsigned (positive) integer multiplication of 16-bit quan-

tities. This operation is carried out by specifically loading the operands

* into the mathematics board and retrieving the results as described in

Section 6. 4. Because of this process, the equations which are executed

cannot be expressed in FORTRAN-like statements. However, it may

perhaps be helpful to express the mathematical equations of Section 6.4

in a standard format using the mnemomics of the PLM software. There-

'I fore, the following paragraphs are a summary of these microcomputer

program "pseudo-statements. " This summary should be reviewed in

conjunction with the detailed explanation in Section 5. 4. 4, Simulator

Processing.

6. 5. 1 Pitch Equations

The digital value of the pitch force is written to the appro-

I priate analog line through digital-to-analog converter DACO. Therefore,

DACO is equated to either the limit force or the linear force, depending

on the magnitude of the pitch displacement (see Figure 5. 3). The pitch

limit force is composed of a linear term, a lag term and a lead term and

can be expressed in the aft direction as:

DACO = - KPLIMF (PITCH-PLIMAFT) + PLIMOLD(l)

+ KPLIMLEAD (PDOT)

6-16
ai

Subsequently for the next frame

PLIMOLD (1) = - KPLIMF (PITCH-PLIMAFT)

For the linear portion of the force range, the following
series of statements express the calculations which take place to incor-

porate each of the modeled parameters:

Spring and Breakout

PTOT = (PITCH+PTRIM) KPSPRINGA(BZ) + KPSOFFA(BZ)

+ KPBRAK

where BZ is the spring segment number.

Breakout Lead

PTOT = PTOT + KPBRKLEAD (PDOT)

Bobweight Effects

PTOT = PTOT + KNZ (NZ)
a PTOT = PTOT + KQDOT (QDOT)

Integration and Output

DACO = PTOTOLD + PTOT/Z

PTOTOLD = PTOT/Z

The above equations would be modified for a forward stick displacement

by appropriately replacing PLIMIAFT, KPSPRINGA, and KPSOFFA with

PLIMFOR, KPSPRINGF, and KPSOFFF.

6. 5. 2 Roll Equations

The analog value of the roll forces is produced by DACI

and, similar to the pitch equations, the roll equations can be expressed

for the limit force as

DACI = - KPLIMF (ROLL-RLIMRT) + RLIMOLD(l)

+ KRLIMLEAD(RDOT)

6-17

RLIMOLD(l) = - KRLIMF (ROLL- RLIMRT)

For the linear portion of the force range, the following series

of statements express the calculations which take place to incorporate each

of the modeled parameters

Spring and Breakout

RTOT = (ROLL+RTRIM) KRSPRINGR(B2) + KRSOFFR(BZ)

+ KRBRAK

where B2 is the spring segment number

Breakout Lead

RTOT = RTOR + KRBRKLEAD (R.DOT)

Viscous and Coulomb Friction

RTOT = RTOT + KRVISC (RDOT) + KRCOUL

Bobweight Effects
a

RTOT = RTOT + KNY (NY)

RTOT = RTOT + KPPDOT (PPDOT)

Integration and Output

DAC1 = RTOTOLD + RTOT/2

RTOTOLD = RTOT/2

The above equations would be modified for a left stick displacement by

appropriately replacing RLIMRT, KRSPRINGR and KRSOFFR with

RLIMLT, KRSPRINGL, and KRSOFFL.

6.5.3 Yaw Equations

The analog value of the yaw force is produced by DAC2 and,

similar to the pitch and roll equations, the yaw equations can be expressed

for the limit force as

6-18

DAC2 = KYLIMF (YAW-YLIMRT) + YLIMOLD(1) + KYLIMLEAD (YDOT)

YLIMOLD = - KYLIMF (YAW-YLIMRT)

For the linear portion of the force range, the following series of statements

express the calculations which take place to incorporate each of the modeled

parameters.

Spring and Breakout

YTOT = (YAW+YTRIM) KYSPRINGR(BZ) + KYSOFFR(BZ)

+ KYBRAK

where B2 is the spring segment number.

Breakout Lead

YTOT = YTOT + KYBRKLEAD (YDOT)

Viscous and Coulomb Friction

YTOT = YTOT + KYVISC (YDOT) + KYCOULI

Integration and Output

DAC2 = YTOTOLD + YTOT/Z
YTOTOLD = YTOT/2

The above equations would be modified for a left rudder displacement by

appropriately replacing YLIMRT, KYSPRINGR, and KYSOFFR with

YLIMLT, KYSPRINGL, and KYSOFFL.

6.6 HARDWARE INTERFACE DESCRIPTION

Interfacing the microcomputer with the control loader and the host

computer is very simple. It requires only two connectors, one for the

analog input board (SBC 711) and one for the analog output board (SBC 724).

If a teletype is to be used it should be connected to the SBC 530 adapter

supplied with the system. If it is desirable to monitor the frame times

with an oscilloscope, one additional conncetor is necessary to gain access

6-19

I ' to Ji on the SBC 80/20 board. The interface specifications, pin connec-

tions, and other relevent information can be gathered from the appropri-
I ate hardware reference manuals (HRM) for the SBC 711, SBC 724, and

SBC 80/20 and the data sheets for the SBC 530. The following descrip-

tions are provided as a reference for interfacing the control loading sys-

tem properly.

The three SBC boards (711, 724, and 80/Z0) all require the same

I type of 50-pin PC edge connector. The following list summarizes the

manufacturers and the part numbers for suitable mating connectors. The

4 technician is advised that the connector manufacturer's numbering sys-

I tem may be different from Intel's and that Intel's numbering must be used

regardless of the pin numbers etched on the connectors.

50-pin PC Mating Connectors

Connector Type Vendor Part No.

Flat Cable 3M 3415-0001
AMP 2-86792-3

Soldered AMP 2-583715-3
VIKING 3VH25/1JV-5
TI H312125

li 1 TIH312125

* ~Wire-wrap TI 1322
VIKING 3VH25/1JND-5
CDC VPB01E43AOOAI
ITT EC4AO5OA1A

Crimp AMP 1-583717- 1

6.6. 1 Analog Input Interface

The analog-to-digital conversions are handled by the Intel

analog input board, SBC 711. This board is capable of making channel-

to-channel conversions at a 16KHZ rate with an overall accuracy of 0. 05%.

The board is configured to accept sixteen single-ended channels of analog

signals through a 50-pin PC edge connector (32). The pin assignments

4-
~6-z0

for the respective channels can be found on page 2-10 of the SBC 711

HRM. The proper methods of cabling can also be found in Figure 2. 5

of that manual. Furthermore the user-option modifications made to

this board can be found in the following subsections of this manual under

Hardware Modifications. The following list summarizes the use of the

analog input channels for the control loader.

2PIN C E VARIABLE

4 0 PDOT

8 1 PITCH
12 2 NZ
16 3 QDOT
20 4 RDOT
24 5 ROLL
28 6 NY
32 7 PPDOT
6 8 YDOT
10 9 YAW
14 10 PTRIMSIG
18 11 RTRIMSIG

12-15 SPARE
U

6.6.2 Analog Output Interface

The digital-to-analog conversions are handled by the Intel

analog output board, SBC 724. This board is capable of making D/A

r conversions with 12-bit resolution with an overall accuracy of 0.05%.

The board is configured to produce four analog output channels through a

50-pin PC edge connector (Jl). The pin assignments for the respective

channels can be found on page 2-8 of the SBC 724 HRM. The proper

methods of cabling for the outputs can be found in Figure 2. 3 of that

manual. Furthermore the user-option modifications made to this board

can be found in the following subsection of this manual under Hardware

Modifications. The following list summarizes the use of the analog out-

put channels for the control loader.

i

• 6-2l

Sj

Ji PIN CHANNEL. VARIABLE

42 0 DACO (PITCH FORCE)
36 1 DACl (ROLL FORCE)
30 2 DACZ (YAW FORCE)

3 SPARE

6. 6. 3 Teletype Interface

Serial communication with the SBC 80/20 is conducted

through a 26-pin PC edge connector (33) on the SBC 80/20 circuit board.

(See page 5-5, SBC 80/20 HRM.) However, this interface is designed

for an RS232C (CRT) type of terminal. To interface a teletype (TTY) an

adapter, the SBC 530, is necessary and is supplied with the control load-

ing microcomputer. This adapter converts the RSZ3ZC signals to 20 ma

current loops. It required no modification and merely plugged into J3 on

the SBC 80/20. The teletype connector on the SBC 530 (J3) is a standard

DBZ5S (female) with the following pin assignments:

PIN FUNCTION

25 TTY TX DATA RETURN
13 TTY TX DATA

Z4 TTY RX DATA RETURN
12 TTY RX DATA

Thus, the Air Force must provide a teletype with a DB25P (male) con-

nector and the above connections.

6.6.4 Frame-Time Interface

It may be desirable to monitor the frame-time information

concerning the control loader microcomputer. This information is avail-

able at the SBC 80/20 connector Jl (see SBC 80/Z0 HRM, p. 5-3) and is

summarized as follows:

PIN BIT PORT FUNC TION

48 0 1 Frame-available time
46 1 1 Frame-used time
49 - - Ground

6-22

The SBC 80/20 has six digital I/O ports of eights bits each. The amount

of frame-available time is displayed by an alternating voltage level on

Bit 0 of Port 1 (pin 48, Jl). The amount of frame-used time is displayed

by a high voltage (5V) level at Bit 1 of Port i (pin 46, JI). This frame-

used time is a function of the mathematical operations used in calculating

the respective control forces. The pulse-width will therefore vary as the

controls of the loading system are moved. Figure 6. 4 illustrates the

nature of these signals. Monitoring these signals has the advantage that

the user can assure himself that a parameter change has not resulted in

any framing errors and that sufficient frame time remains for further

changes.

Bit 0
Po rt 1

FRAME TIME I
AVAILAB LE

Biti1
Port 1

FRAME TIME
'I - - USED

Figure 6.4 Frame Time Pulses

6.7 SYSTEM OPERATION

The microcomputer carries with it a great deal of simplicity. Its

operation does not require a high degree of skill in the digital sciences or

computer technology. The following paragraphs relate the tasks which

the system operator must accomplish to initiate the control loading simu-

lator or any of the other options.

6-23

6.7. 1 Interfacing

The minimum "black box" configuration requires that the

analog inputs be connected to the control loader and host computer as

described in Section 6. 6. 1. In addition, the analog outputs must be con-

nected to the control loader as described in Section 6. 6. 2. The micro-

computer is therefore a stand alone device as illustrated in Figure 1. 1.

If the operator desires to change a parameter or execute any of the self-

test features built into the microcomputer, a teletype must be connected

to the SBC 530 TTY adapter as described in Section 6.6.3.

6.7. 2 Power Up and Simulator Execution

In the minimum "black box" configuration described above,

the only required operation is to apply power to the SBC 80/20 by depres-

sing the "power on" switch on the left side of the front panel. The simu-

lator is automatically entered and the system is ready for immediate use
with the control loading system.

I

6. 7. 3 Optional Features

I The system operator may elect to use some of the options

associated with the microcomputer. He may elect to reset both the hard-

ware and software through the use of the RESET button on the right side

of the front panel. If he connects a teletype to the system he may change

parameters and/or initiate one of the self-test features.

6. 7. 3. 1 Reset

The CPU is equipped with a "power-on reset"

feature such that .5 second reset pulse is produced when power is first

applied. If the operator depresses the reset button on the right side of

the front panel the same action will be taken as when the power is first

applied, except that the reset level remains active as long as the button

is held.

24

AO-AI00 429 DAYTON UNIV OH4 SCHOOL OF ENGINEERING F/6 9/2
COM4PUTER PROGRAM DOCUMENTATION FOR MICROCOMPUTER IMPLEMENTATIOMN-ETC(U)

OCT 78 F 6 ALBERS, J CROUCH F33657-77-C 0477

UNCLASSIFIED URTR78-98

CAUTION

When the reset button is depressed the analog out-
put board commands all of the DAC's to go to -10v.
Caution must be taken to disconnect or otherwise
disable the control loader so that the servoes are
not commanded to go to the negative limit. A hard-
ware modification can be made to correct this
situation if necessary.

6.7. 3. 2 Parameter Changes

The operator may enter parameter changes by

first depressing a key (any key) on the teletype console while the simula-

tor is active. This action will cause the simulator loop to be temporarily

interrupted and the loading on the stick and rudder will be zeroed (all

DAC's =Ov). The operator is presented with the query

CHIANGE PARAMETER? (Y or N)

If he responds in the negative (N) the system will assume he wishes to

execute a self-test program. If he responds in the positive (Y) the sys-

tem will pursue this request further by typing

PARAMETER NUJMBER?

The processor is now waiting for the number of the parameter to be

4 changed (see Section 6. 1 and 5. 4. 4. 1). The parameters and the

associated numbers are listed in Table 5. 1. If the operator depresses

the carriage return without inputting a parameter number the processor

* immediately returns to the simulator loop.

CAUtTION

The stick and rudders should be placed in a position
close to neutral to prevent rapid build-up of forces.

If, on the other hand, the operator selects one of

the parameters, the processor will display that parameter's present

value, e. g.

6-25

PRESENT VALUE = 23522

The system then asks for a new value by typing

NEW VALUE?

If the operator inputs a carriage return without first inputting a value,

that parameter remains unchanged and control passes back to the

"parameter number" question. This feature allows the operator to

interrogate parameters without changing them. Of course if he does

supply a valid integer value (965535), that parameter will be changed

appropriately. Once again, the parameter change routine is terminated

and the simulation is resumed by typing a carriage return immediately

after being asked for a parameter number.

6.7.3.3 Self- Test Programs

If the operator desires to execute a calibration or

test program while the simulator is operating he must first depress aI

key (any key) on the teletype console. This action terminates the simula-

tor loop and causes the system to ask the operator

CHANGE PARAMETER? (Y OR N)

The response must be negative (N) for which the system will enter the

executive program as evidenced by the console message:

CONTROL LOADER EXECUTIVE

WHICH PROGRAM?

The operator may now select any of the self test programs (0 through 4) by

typing the appropriate number. (See Section 5. 2. 7 for a complete descrip-
tion of these programs.) At the completion of a program control passes

back to the executive. However, if program 5 is selected, control passes

back to the simulator; that is, all simulator parameters are reinitialized

and the simulator loop is entered.

6-26

7- - 77 - 7.

APPENDIX A

MODULE FLOW CHARTS

This section contains the detailed module flow charts referenced in

Section 5. Each flow chart corresponds to the procedure of the same name

as described in that section.

A1
h

I

* '

A-i

A

ENTRY

YES PCNHAR =_ 'ETX'

RETURN,/ NO

EN D

_PRINT$T

PRINT$PTR + I

gI
S

Figure A. 1
PRINT PROCEDURE

SI '

S

A-Z

ENTRY,.

II

12=LNE$INPUTJ
-

RESUT = LE$BUF(ZAND OFH

MULTPR1

NO ___ 02~

RETURN ~YES

4

>

I ENDB2 BZ - 1

DIGIT LINEBUF(BZ) AND OFHT

RESULT = RESULT +
MULTIPLIER X DIGIT

Figure A. 2
ASCIITOFIX PROCEDURE

A-3

ENTRY

* MULTIPLIER =10, 000

U5

IAl =RESULT MULTIPLIER

Bi Al

ILINEBUF(CHARCOUNT) =l

Bi OR 30H

N 0>

MULTTIPLER-R 10

MULTIPLIER -1

IMLILE-*1

Figure A. 3
FIXTOASGII PROCEDURE

A-4

ENTRY

/DO OPERATION

NO DN

YE

PERFORROCEDUES

1E NTP
U

- ETU
EASWE

NTR

START

L1A
* NO

FRAME PROCEDUR

4 A-6

7NTR

DEFINE
COEFFICIENTS

0-224

CALL
FRAME

FRAME-ACTIVE

REE

SILO NR

Figure A. 6. 1
SIMULATOR PROCEDURE

A-7

B

I AFT YS 2 YES

NNO

PIC

4I I Ih

A-8

* OPERAND IL=
PITCH - PLIMAFT

CALL
PERFORM (TIMS)

NO
1+

A-9

C ALL
PERFORM (TIMES\,

GALL
PITC{$LFORCE

I 0
TO ROLL EQUATION

Figure A.6.4

A- 1

II

PTI

PTI

A-l

OPERAND 1L, A2

PDBANDF - Al

Ii

BPA2 =

KPSPRI-NOBZ

Figur A26

PSBRKA-12

17
- 5

OPERAND 1 L, A2
Al - PDBANDA

B2SPI=G(B0

CALL PFOR (IMS

DO Biur 1ATO.N

A21aA

YES PO T

PTOT PTQT + PTOT PTOT -
OPRA1 IHN 1

Figure A. 6. 8

A- 14

4 7

OPERAND ZL
KPVISC

AOPERAND 1L =A2, OPERAND 1L=
-PDOTPDOT

I~KCU AZ= PCULZ PCU

CALL PERFORM (TIMES)l CALL PERFORM (TIMES)

PTTPTOT + TT=PO
OPERAND 1H +A2 (OPERAND 1H+ AZ)

Figure A. 6. 9

A- 15

OPERAND 2L =KNZ

FCLERFORM (IE)CALL PERFORM (TIMES)J

PTO + PERND-jPTOT =PTOT -OPERAND 1H

OPERtAND 2L =KQDOT

II

E ND 1L 1QOTRND 1LQO

CAL ERFORM MS)CLLRFORM T S

PTOT =PTOT + OPERAND 1H PT OT =PTOT - OPERAND 1H

Figure A.6. 10

A-16

PTOTOLD + Al

TO ROLL EQUATIONS

Figure A. 6. 11

A- 17

EQUATIONS

YAW EQUATIONS

11

I

U

Note: Roll and Yaw Equations are processed identical
to the Pitch equations.

Figure A.6. 12

.A-I

A-18 t

'4 FROM YAW EQUATIONS

RESET BIT 1
AT 3'

EN

NREPLACEEOL

AA-?

OPERAND 2L=
KP LIMLEAD

YE YESiDD OVENLO

OPERAND 1L OPERAND 1L

RETURN RETETRN

PLEADN PRCDRETR

A-20

ENTRY

RESULTANT PRCER

POSTIV

.did

